As you Likert – cross-mode equivalence of administering lengthy self-report instruments via text message

• A measure is invariant if *individuals with the* same standing on a construct receive the same score on an instrument intended to measure that construct (Schmitt & Kuljanin, 2008).

- A measure is invariant if *individuals with the* same standing on a construct receive the same score on an instrument intended to measure that construct (Schmitt & Kuljanin, 2008).
- Measurement invariance can be threatened by:
 - Different populations (i.e. different age groups) (Wicherts, Dolan, & Hessen, 2005

- A measure is invariant if *individuals with the* same standing on a construct receive the same score on an instrument intended to measure that construct (Schmitt & Kuljanin, 2008).
- Measurement invariance can be threatened by:
 - Different populations (i.e. different age groups) (Wicherts, Dolan, & Hessen, 2005)
 - Different versions (i.e. cross-language) (Geisinger, 1994)

- A measure is invariant if *individuals with the* same standing on a construct receive the same score on an instrument intended to measure that construct (Schmitt & Kuljanin, 2008).
- Measurement invariance can be threatened by:
 - Different populations (i.e. different age groups) (Wicherts, Dolan, & Hessen, 2005)
 - Different versions (i.e. cross-language) (Geisinger, 1994)
 - Different modes (Dillman, Smyth, & Christian, 2009)

Multi-group confirmatory factor analysis

(e.g. Leung & Kember, 2005; Richardson & Johnson, 2009; Schmitt & Kuljanin, 2008; Vecchione et al., 2012)

- Multi-group confirmatory factor analysis (e.g. Leung & Kember, 2005; Richardson & Johnson, 2009; Schmitt & Kuljanin, 2008; Vecchione et al., 2012)
- Most common comparison: web versus paper
 - Some found underlying factor structure differences (e.g. Hirai, Vernon, Clum, & Skidmore, 2011)

- Multi-group confirmatory factor analysis (e.g. Leung & Kember, 2005; Richardson & Johnson, 2009; Schmitt & Kuljanin, 2008; Vecchione et al., 2012)
- Most common comparison: web versus paper
 - Some found underlying factor structure differences (e.g. Hirai, Vernon, Clum, & Skidmore, 2011)
 - Common issue is web questionnaires tend to have systematically higher scores (Vecchione et al., 2012), so higher latent mean scores (Cole, 2006; Meade, Michels, & Lautenschlager, 2007)

- Multi-group confirmatory factor analysis (e.g. Leung & Kember, 2005; Richardson & Johnson, 2009; Schmitt & Kuljanin, 2008; Vecchione et al., 2012)
- Most common comparison: web versus paper
 - Some found underlying factor structure differences (e.g. Hirai, Vernon, Clum, & Skidmore, 2011)
 - Common issue is web questionnaires tend to have systematically higher scores
 (Vecchione et al., 2012), so higher latent mean scores (Cole, 2006; Meade, Michels, & Lautenschlager, 2007)
- Self-report experience (difficulty reading instructions, or typing responses)

Why SMS?

- One of the most widely used data services worldwide
- Most Australians use SMS daily (ACMA, 2011)
- Bulk services are cheap
- Stitch messages together

Why length?

- Length of an SMS is still salient to many users (Battestini, Setlur, & Sohn, 2010)
- In other modes instrument length can impact:
 - participant engagement (Dillman, Smyth, & Christian, 2009)
 - data quality and response rates (i.e. Burchell & Marsh, 1992; Jepson et al. 2005; LaMar & Gale, 1982)
- To date, there are no published examples of research administering pre-existing psychological instruments via SMS

- 5?
- 10?

- 5?
- 10?
- 15?
- 16?
- 20?

- 5?
- 10?
- 15?
- 16?
- 20?
- The longest instruments administered via SMS in the literature currently stand at 23 (De Lepper et al., 2013) and 24 (Lee et al., 2013) items.

- 5?
- 10?
- 15?
- 16?
- 20?
- The longest instruments administered via SMS in the literature currently stand at 23 (De Lepper et al., 2013) and 24 (Lee et al., 2013) items.
- 42?

- 5?
- 10?
- 15?
- 16?
- 20?
- The longest instruments administered via SMS in the literature currently stand at 23 (De Lepper et al., 2013) and 24 (Lee et al., 2013) items.
- 42?
- 60!

How best to push?

- Study 1: Systematically vary instrument length
 - Factor analysis of 1011 20-item Ruminative Thought Styles questionnaire (Brinker & Dozios, 2009) to make 5, 10, and 15 item short form variants.

How best to push?

- Study 1: Systematically vary instrument length
 - Factor analysis of 1011 20-item Ruminative Thought Styles questionnaire (Brinker & Dozios, 2009) to make 5, 10, and 15 item short form variants.
- Study 2: Use pre-existing scales of different lengths
 - 10-item negative axis of the PANAS (Watson, Clark, & Tellegen, 1988)
 - 6-item Acceptance and Action Questionnaire (Hayes et al., 2004)
 - 42-item Depression Anxiety Stress Scale (Lovibond, 1995)
 - 60 item PANAS-X (Watson & Clark, 1994).

How best to push?

- Study 1: Systematically vary instrument length
 - Factor analysis of 1011 20-item Ruminative Thought Styles questionnaire (Brinker & Dozios, 2009) to make 5, 10, and 15 item short form variants.
- Study 2: Use pre-existing scales of different lengths
 - 10-item negative axis of the PANAS (Watson, Clark, & Tellegen, 1988)
 - 6-item Acceptance and Action Questionnaire (Hayes et al., 2004)
 - 42-item Depression Anxiety Stress Scale (Lovibond, 1995)
 - 60 item PANAS-X (Watson & Clark, 1994).
- Last two have multiple factors

Participants (Hapless Souls)

- Study 1, *N*=417
 - 42 did the five item RTS (20 via paper, 21 via SMS)
 - 46 did the ten item (20 via paper, 26 via SMS)
 - 46 did the fifteen item version (20 via paper, 26 via SMS)
 - 283 the original twenty item RTS (120 via paper, 163 via SMS).

Participants (Hapless Souls)

- Study 2 *N*=911
 - 10-item PANAS: 183 participants (57 via SMS, 126 online)
 - 16-item AAQ: 253 (36 via SMS, 217 online)
 - 42-item DASS: 84 participants (57 via SMS, 27 online)
 - 60-item PANAS-X: 391 participants (124 via SMS, 267 online)

SN	ЛS	Paper		Factor invariance		
М	α	М	α	t	Weak	Strong
21	0.79	24	0.67	2.19*	No	No

SMS		Paper			Factor in	variance
М	α	М	α	t	Weak	Strong
47	.68	42	.89	1.41	Yes	Yes

online

SMS

40

SN	/IS	Pa	per		Factor inva	
М	α	М	α	t	Weak	Strong
13	.80	21	.88	10.33	Yes	No

30

0.00

10

20

Total score

SN	IS Paper		SMS			Factor in	variance
М	α	М	α	t	Weak	Strong	
66	.88	60	.90	1.25	Yes	Yes	

SN	/IS	Pa	per		Factor in	variance
М	α	М	α	t	Weak	Strong
68	.70	21	.88	10.33*	Yes	No

SMS		MS Paper			Factor in	variance
М	α	М	α	t	Weak	Strong
84	.91	88	.90	1.45	Yes	Yes

DASS: 42 items

SMS		Paper			Factor in	variance
М	α	М	α	t	Weak	Strong
45	.90	21	.91	5.08*	Yes	Yes

DASS: 42 items

SN	SMS		Paper		Factor in	variance
М	α	М	α	t	Weak	Strong
45	.90	21	.91	5.08*	Yes	Yes

DASS: 42 items

SN	ЛS	Pa	Paper Fact		Factor in	invariance	
М	α	М	α	t	Weak	Strong	
45	.90	21	.91	5.08*	Yes	Yes	

PANAS-X: 60 items

SN	SMS		Paper		Factor in	variance
М	α	М	α	t	Weak	Strong
23	.86	15	.85	9.6*	Yes	No
31	.83	27	.86	5.8*	Yes	No

Conclusions

 As long as sixty items in length can be administered by SMS

Conclusions

- As long as sixty items in length can be administered by SMS
- BUT in instruments over ten items in length
 - SMS had Higher means
 - Lack of equivalence in latent means and intercepts.

Conclusions

- As long as sixty items in length can be administered by SMS
- BUT in instruments over ten items in length
 - SMS had Higher means
 - Lack of equivalence in latent means and intercepts.
- Isn't due to
 - Different participant age
 - Instrument length (beyond ten items)
 - Difficulty understanding instructions
 - Difficulty typing out the response