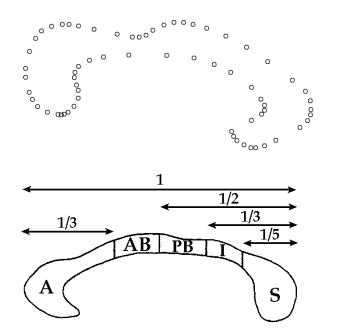

Geometric morphometric analysis for quantifying and categorizing brain structure shape in diabetic and non-diabetic populations

Dr. Erin Walsh Dr. Marnie Shaw, Mark Fraiser, Kaarin Anstey & Nicolas Cherbuin

Centre for Research on Ageing, Health and Wellbeing Research School of Population Health, ANU

Shape can impact function


Sources: <u>http://www.previninc.com/shop/media/detail/93433.jpg</u> http://www.matferbourgeatusa.com/content/images/thumbs/0001141_mise-en-bouche-mini-bent-spoon.jpeg http://img.photobucket.com/albums/v120/tanalu/Spoon4.jpg http://johnlewis.scene7.com/is/image/JohnLewis/231159253?\$prod_exlrg\$http://femininepeace.org/wpcontent/uploads/corpus_callosum1337487504159.jpg

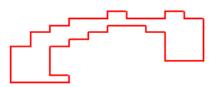
How to quantify shape?

A problem of dimension reduction

glm(Diabetes ~ area)

glm(Diabetes ~ areaA) glm(Diabetes ~ areaAB) glm(Diabetes ~ areaPB)

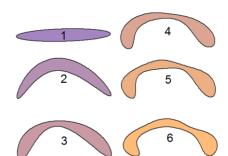
Geometric morphometric analysis glm(Diabetes ~ shape)


Source: http://cmp.felk.cvut.cz/cmp/demos/Medical/LevelSetSegmentation/images/corpusCallosum_seg.jpg

How to quantify shape? Polygons and fouriers

Polygonisation

- Deconstruction of shape into polygons (here, rectangles)



Simplified coordinates

	x	У
1	1.499993	0.7500055
2	1.331718	0.8540184
3	1.163443	0.9391722
4	0.995168	0.9900272

Fourier

 Deconstruction of shape into harmonics

Harmonics

A1	A2	A3	B1	в2	B3
1	0.0384	-0.00559	5.39e-17	0.0758	-0.0197
1	0.0473	-0.07230	-2.67e-17	0.0674	-0.0275
1	0.0587	0.00156	-4.89e-17	0.0546	-0.0174
1	0.0714	-0.03920	-5.25e-17	0.0887	-0.0357
1	0.0248	0.02420	0.00e+00	0.0522	-0.0111
1	0.0277	0.02920	1.62e-16	0.0558	-0.0317

eFourier

tFourier, rFourier

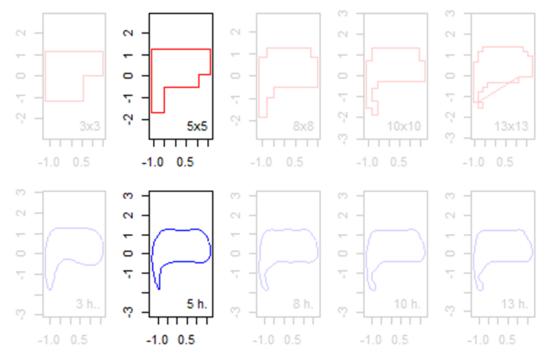
How to quantify shape? Polygons and fouriers

To get a little, you need to give a little...

Polygons

Variable dimension reduction

- 3x3 grid -> 6-9 coordinates
- 13x13 grid -> 6-169 coordinates


eFourier

Consistent dimension reduction

- 3 harmonics -> 6 harmonic pairs
- 13 harmonics -> 26 harmonic pairs

For this talk, we're going with 5

- 5x5 grid -> 6-25 coordinates
- 5 harmonics -> 10 harmonic pairs

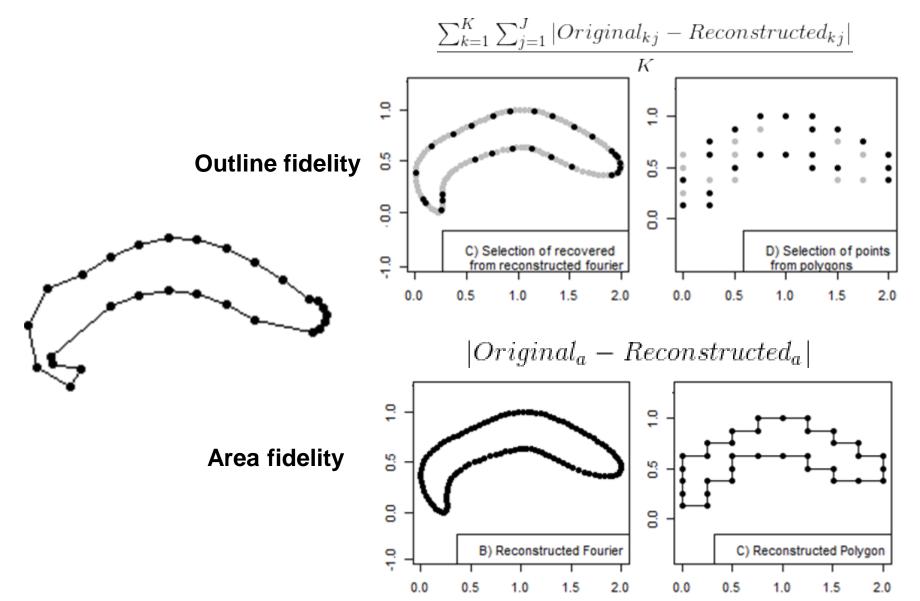
So, what works best?

... Wait, what is 'best'?

What I've got:

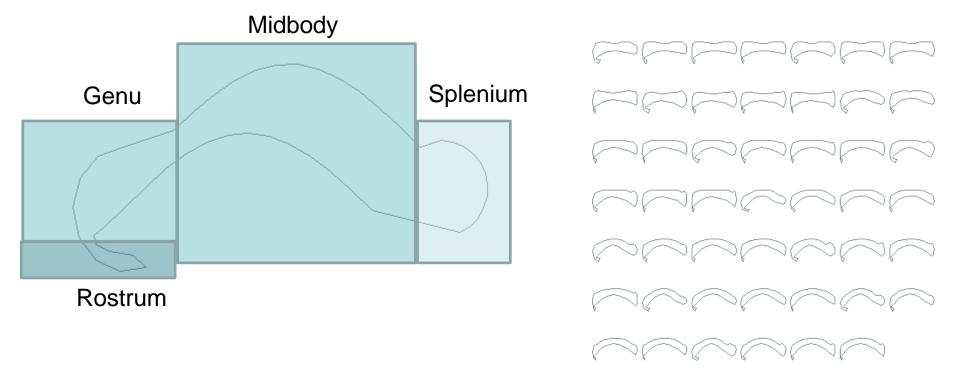
How well the different methods can recover shapes

Source: http://www.theblaze.com/wp-content/uploads/2013/08/600x4503.jpg http://georgiamidwife.org/wp-content/uploads/2015/07/We-want-youimage.png


What I also want:

How sensitive the methods are to shape differences when plugged into subsequent (epidemiologist friendly) analyses

Metrics for evaluation

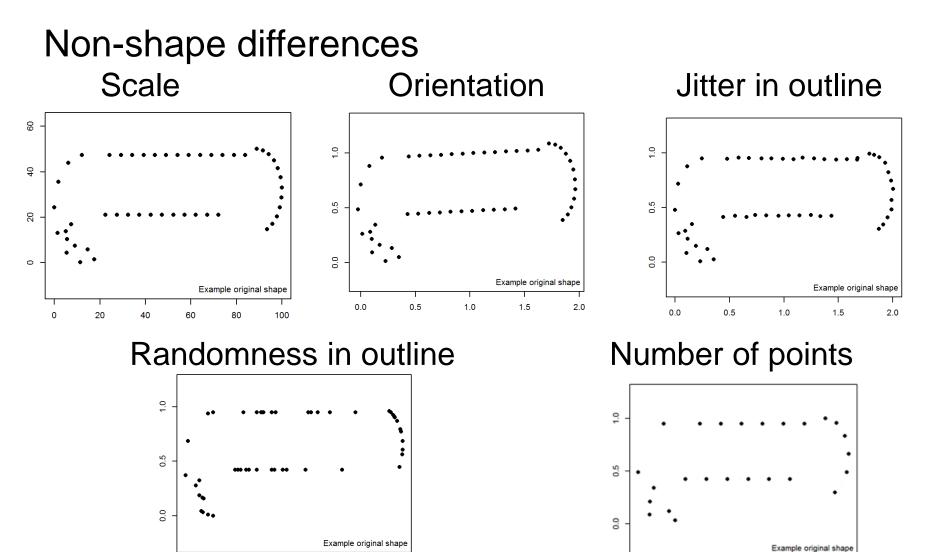

Shapes for evaluation

A lot of variability in 'real' data... so we'll start with some fake data.

Systematically modifiable test shapes with similar elements to the corpus callosum

Caveat: WITHOUT using tools we will then use to describe the shapes

- Solution: Frankenstein's monster of circles and sine waves:



2.0

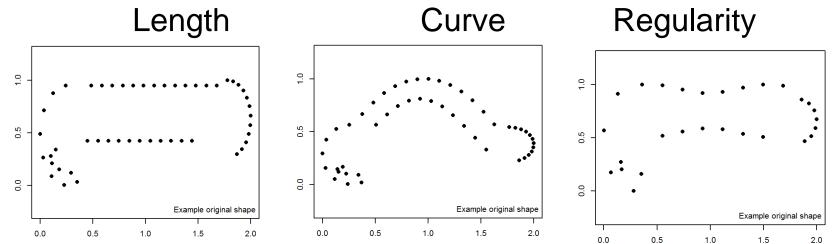
1.5

Modification of things that shouldn't change...

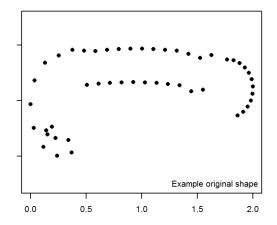
0.0

0.5

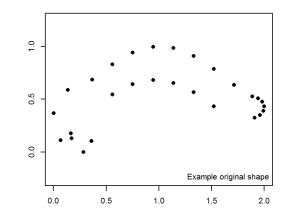
1.0


0.0 0.5 1.0 1.5

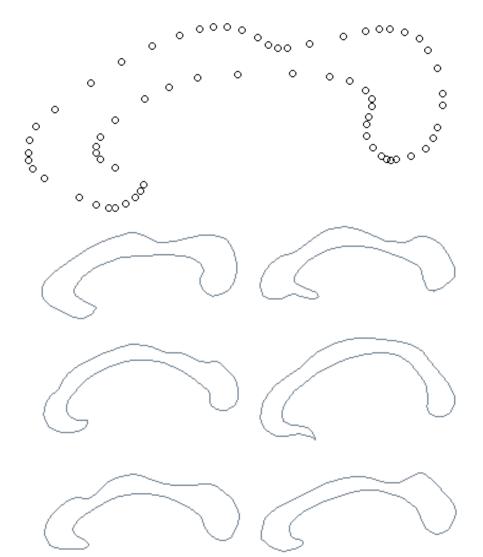
2.0



Modification of things that should change....

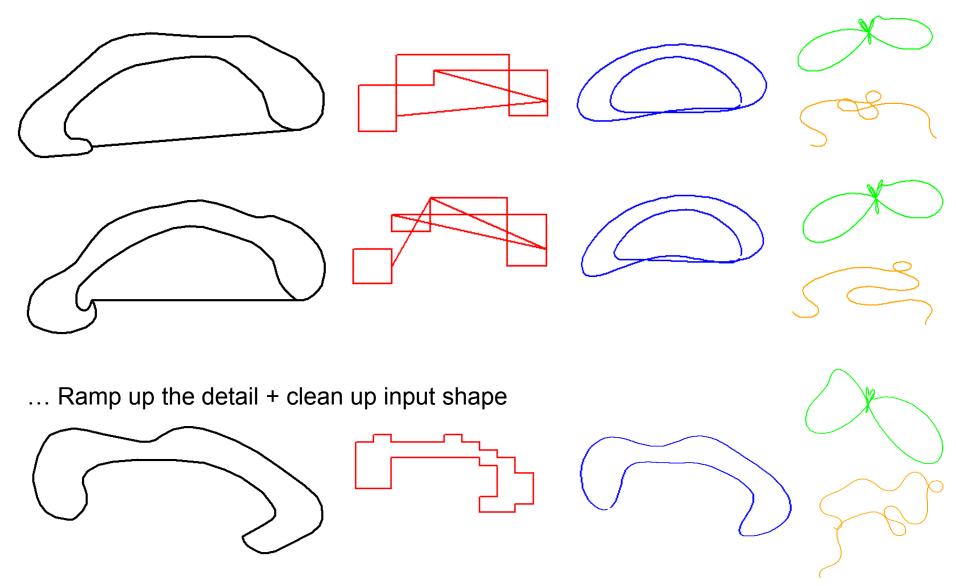

Real shape differences

Splenium size



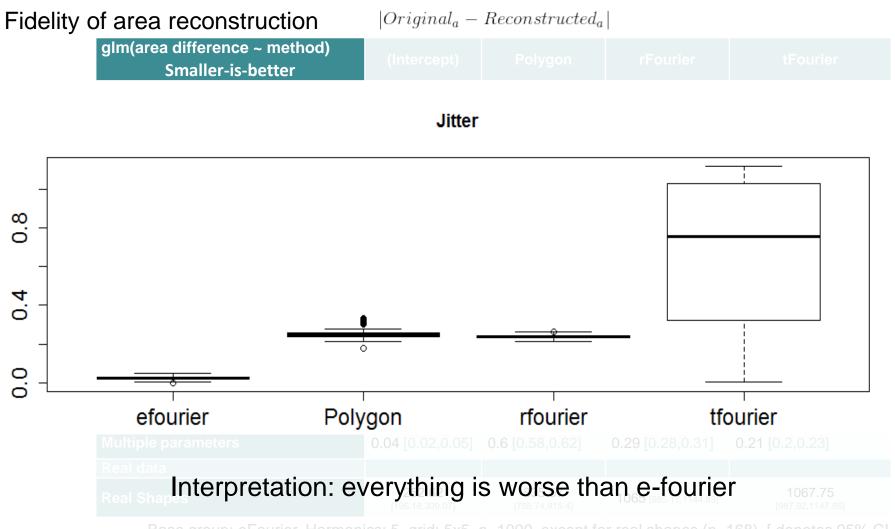
Everything changing!

... then try it with the real thing.

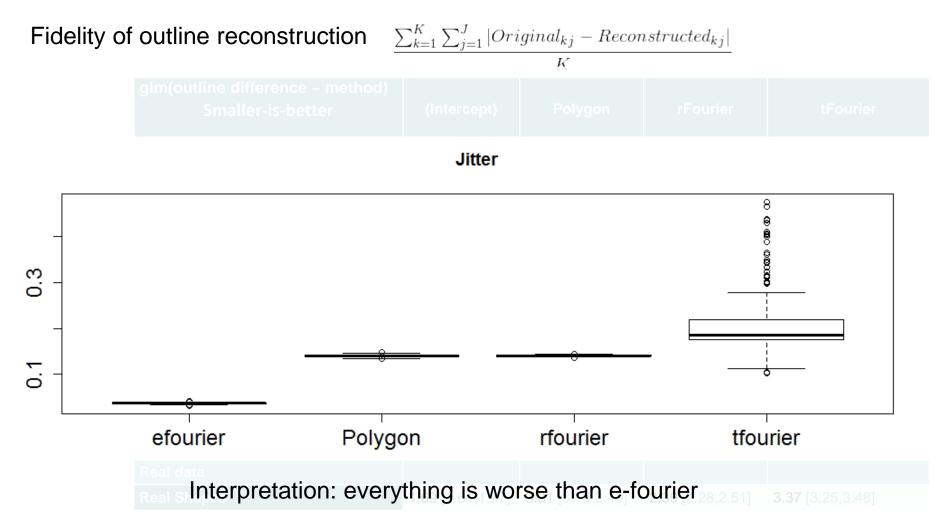


VC จะ 6 もん 518 ∾. 5 (n.n.l っんさ 7/ \mathbb{R} D13 N/ VĊ RARE raak NC $\mathcal{D}_{\mathcal{C}}$ 51 0*R* COC. $\sim \sim <$ V.C rand0 VC О. C RC 76 ಾನ್ Ć V6 ₹*R* 50 56 ∿⁄≀ CCC d $\neg \frown$ VC $\$ 76 e VE \mathbb{R}^{n} rac \sim ろに ಶಿಡಿ NĆ 7. <u></u> r~~ $\sim_{\mathscr{C}}$ ~~ VE \sim $\sim \sim <$ £ ∖& V/? 70 $\nabla \mathcal{X}$ $\mathcal{D}_{\mathcal{C}}$ \mathbb{N} 0 ŝ 56 30 VA

> 168 traces Community-living adults from the PATH Study.

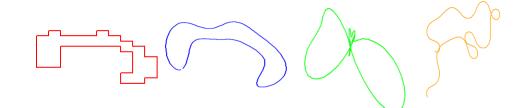


The eyeball test


Quantifying 'best'

ase group: eFourier. Harmonics: 5, grid: 5x5. n=1000, except for real shapes (n=168). [denotes 95% Cl.

Quantifying 'best'



Base group: eFourier. Harmonics: 5, grid: 5x5. n=1000, except for real shapes (n=168). [denotes 95% Cl.

All signs point to...

- Fidelity of outline reconstruction
- Fidelity of area reconstruction



Quantifying 'best'

Q: How to quantify sensitivity to shape differences?

e.g. If I systematically modify the size of the splenium, at what point does the method register the difference? (binary and/or continuous outcomes)

Source: http://img2.wikia.nocookie.net/__cb20121213183536/es.pokemon/images/3/38/EP768_Leavanny_debilitado.png

The goal:

Quantify and categorize corpus callosum shape in diabetic and non-diabetic populations.

The question:

How best to quantify shape?

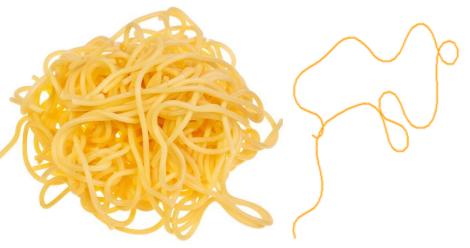
The (provisional) answer:

eFourier analysis

The next step:

- Better evaluation sensitivity to shape

 (Q: If I systematically modify the size of the splenium, at what point does the method register the difference?)
- eFourier frolic (Q: any interesting suggestions beyond MANOVA and PCA?)



Acknowledgements

Thanks to:

- N. Cherbuin, M. Shaw, M. Fraser, the PATH team, interviewers and participants (for the data)
- V. Bonhomme (for the Fourier analysis r package that made all this practical)
- The Australian Research Council, Australian National Health and Medical Research Council, and National Infrastructure Facility (for the funding)

Happy to share R spaghetti code underlying this talk!

Bonus conclusion: rFourier = spaghetti?

We want YOU to suggest...

- Better evaluation sensitivity to shape

 (Q: If I systematically modify the size of the splenium, at what point does the method register the difference?)
- eFourier frolic (Q: any interesting suggestions beyond MANOVA and PCA?)

Stuff that didn't fit in the presentation Things to do

- (intended) full list of comparisons:
 - Constructed
 - Real (manually traced)
 - Real (automatically traced)
- Other similarity tests
 - Presence/absence of vectorized pixle in raster space (typically used in neuro for interrater reliability for area traces)
 - Jaccard index
 - Sørensen–Dice coefficient
 - ICC instead of glm

- Possible sensitivity tests
 - Sample output from 1000 shapes, 100 per group, increase distance between groups, GLM until significance
 - Simulate binary or continuous correlates for shapes, see how big the correlate has to be before GLM picks out a predictive relationship
- Poor tFourier and rFourier
 - Re-run with re-sampled contours so their assumptions are met so they have a fighting (if unrealistic) chance

Numeric results

Fidelity of area reconstruction

$|Original_a - Reconstructed_a|$

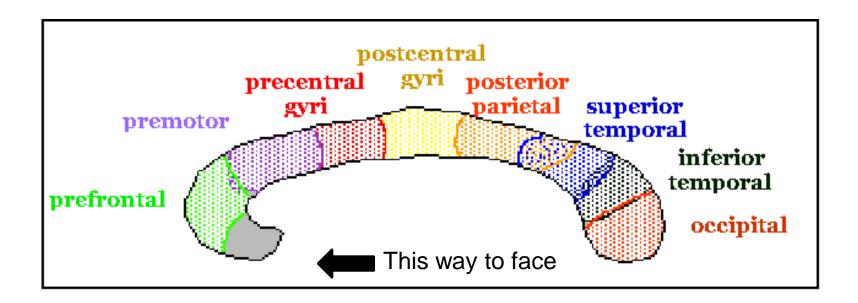
glm(area difference ~ method) Smaller-is-better	(Intercept)			
Things which shouldn't change				
Scale	7637.48 [-2663.31,17938.27]	73587.84 [59020.33,88155.36]	67581.88 [53014.36,82149.39]	347059.85 [332492.34,361627.37]
Orientation	0.03 [0.02,0.05]	1.07 [1.05,1.08]	0.1 [0.08,0.11]	1 [0.99,1.02]
Jitter in outline	0.02 [0.01,0.03]	0.22 [0.21,0.24]	0.21 [0.2,0.23]	0.67 [0.66,0.69]
Randomness in outline	0.04 [0.02,0.06]	0.51 [0.48,0.53]	0.2 [0.18,0.23]	0.77 [0.74,0.79]
Number of points	0.03 [0.02,0.05]	1.07 [1.05,1.08]	0.1 [0.08,0.11]	1 [0.99,1.02]
Things which should change				
Midbody length	0.04 [0.03,0.05]	0.75 [0.73,0.76]	0 [-0.02,0.01]	0.58 [0.56,0.59]
Midbody curve	0.01 [0,0.03]	0.59 [0.57,0.61]	0.34 [0.32,0.36]	0.09 [0.07,0.11]
Midbody regularity	0.01 [0,0.02]	1.11 [1.1,1.12]	0.16 [0.15,0.17]	0.41 [0.4,0.42]
Splenium size	0.11 [0.09,0.12]	0.93 [0.91,0.95]	0 [-0.02,0.02]	0.52 [0.5,0.54]
Multiple parameters	0.04 [0.02,0.05]	0.6 [0.58,0.62]	0.29 [0.28,0.31]	0.21 [0.2,0.23]
Real data				
Real Shapes	252.62 [196.18,309.07]	835.57 [755.74,915.4]	1065 [985.17,1144.83]	1067.75 [987.92,1147.59]

Base group: eFourier. Harmonics: 5, grid: 5x5. n=1000, except for real shapes (n=168). [denotes 95% CI.

Numeric results

Fidelity of outline reconstruction

		K		
glm(outline difference ~ method) Smaller-is-better	(Intercept)	Polygon	rFourier	tFourier
Things which shouldn't change				
Scale	18.24 [15.18,21.3]	51.58 [47.25,55.91]	52.99 [48.66,57.32]	119.72 [115.39,124.05]
Orientation	0.04 [0.04,0.04]	0.14 [0.13,0.14]	0.09 [0.08,0.09]	0.2 [0.2,0.2]
Jitter in outline	0.04 [0.04,0.04]	0.1 [0.1,0.11]	0.1 [0.1,0.11]	0.16 [0.16,0.16]
Randomness in outline	0.04 [0.04,0.04]	0.1 [0.09,0.1]	0.09 [0.09,0.1]	0.19 [0.19,0.2]
Number of points	0.04 [0.04,0.04]	0.1 [0.1,0.1]	0.07 [0.07,0.08]	0.17 [0.17,0.17]
Things which should change				
Midbody length	0.05 [0.04,0.05]	0.1 [0.1,0.11]	0.08 [0.08,0.08]	0.17 [0.17,0.17]
Midbody curve	0.04 [0.04,0.04]	0.11 [0.1,0.11]	0.07 [0.07,0.07]	0.09 [0.09,0.09]
Midbody regularity	0.04 [0.04,0.04]	0.1 [0.1,0.1]	0.09 [0.09,0.09]	0.16 [0.16,0.16]
Splenium size	0.05 [0.05,0.05]	0.1 [0.1,0.1]	0.08 [0.08,0.08]	0.15 [0.15,0.15]
Multiple parameters	0.04 [0.04,0.04]	0.1 [0.1,0.1]	0.08 [0.08,0.08]	0.12 [0.12,0.12]
Real data				
Real Shapes	1.69 [1.61,1.77]	3.31 [3.19,3.43]	2.39 [2.28,2.51]	3.37 [3.25,3.48]


 $\frac{\sum_{k=1}^{K} \sum_{j=1}^{J} |Original_{kj} - Reconstructed_{kj}|}{V}$

Base group: eFourier. Harmonics: 5, grid: 5x5. n=1000, except for real shapes (n=168). [denotes 95% CI.

Corpus callosum connectivity

- Caveat: thicker doesn't always mean more connections (it also depends on how densely packed it is)
- Approximate locations of connections to neural regions

Davis, K. L., Libon, D. J., Nissanov, J., Skalina, S. M., Lamar, M., & Chute, D. L. (1999). Neuropsychological assessment and volumetric magnetic resonance imaging of the corpus callosum in dementia. *Archives of Clinical Neuropsychology*, *14*(8), 622-623.