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The current challenge in clinical practice is to identify those with mild cognitive impairment (MCI), who
are at greater risk of Alzheimer’s disease (AD) conversion in the near future. The aim of this study was to
assess a clinically practical new hippocampal indexdhippocampal volume normalized by cerebellar
volume (hippocampus to cerebellum volume ratio) used alone or in combination with scores on the Mini
eMental State Examination, as a predictor of conversion from MCI to AD. The predictive value of the
HCCR was also contrasted to that of the hippocampal volume to intracranial volume ratio. The findings
revealed that the performance of the combination of measures was significantly better than that of each
measure used individually. The combination of MinieMental State Examination and hippocampal vol-
ume, normalized by the cerebellum or by intracranial volume, accurately discriminated individuals with
MCI who progress to AD within 5 years from other MCI types (stable, reverters) and those with intact
cognition (area under receiver operating curve of 0.88 and 0.89, respectively). Normalization by cere-
bellar volume was as accurate as normalization by intracranial volume with the advantage of being more
practical, particularly for serial assessments.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Mild cognitive impairment (MCI) refers to modest cognitive
decline along with preserved daily activities (Association, 2013).
Although many people with MCI live largely normal lives, they are
at higher risk of developing Alzheimer’s disease (AD) than those
without MCI (Forlenza et al., 2013). The available evidence suggests
that less than half of patients diagnosed with MCI may progress to
AD in a 5-year period while the rest remain stable or reverse to
cognitively normal (CN) status (Falahati et al., 2014; Pandya et al.,
2016). Generally, there is an expectation of eventual conversion
from MCI to AD due to the progressive nature of the neurodegen-
erative processes involved, and MCI stability can depend on the
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duration of follow-up (Ganguli, 2013). Reversion to CN status is still
an unresolved question but may relate to the relatively unspecific
nature of diagnostic criteria, interaction with comorbid conditions,
and/or variability in the pathological process (Park et al., 2015).
Thus, the current clinical challenge is to discriminate individuals
with MCI who are more likely to convert to AD.

In their revised position, the National Institute on Aging and the
Alzheimer’s Association (NIA-AA) considered MCI and AD as
different stages of the AD continuum rather than 2 distinct clinical
entities (Albert et al., 2011; Jack et al., 2018). In 2011, NIA-AA
reviewed diagnostic guidelines and suggested that, owing to
greater diagnostic uncertainty earlier in the AD continuum, MCI
diagnosis should be supported by biological markers reflecting AD
pathology (Albert et al., 2011). In 2018, the NIA-AA work group
further qualified this position and recommended that biological
markers should reflect neuropathological processes that define the
disease instead of simply supporting the diagnosis (Jack et al.,
2018). Based on this expert consensus, the work group recom-
mended that AD biomarkers should be incorporated into MCI/AD
diagnostic criteria. The NIA-AAwork group identified 3 types of AD
biomarkers directly related to the underlying pathological pro-
cesses. The biomarkers include (1) amyloid-b deposition including
cortical amyloid positron emission tomography (PET) ligand
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bonding (F18�flutemetamol PET) and low cerebrospinal fluid (CSF)
Ab42; (2) aggregated tau including cortical tau PET ligand bonding
(flortaucipir-PET) and elevated CSF phosphorylated tau (P-tau); and
(3) neurodegeneration or neural injury including PET-detected
hypometabolism (fluorodeoxyglucose-PET), CSF total tau (T-tau),
and cortical/volume atrophy on magnetic resonance imaging (MRI)
scan (Jack et al., 2018).

Much research has been conducted to evaluate amyloid-b
deposition, tau aggregation, and hypometabolism using PET scans
and CSF biomarkersdseparately or in combinationdto classify MCI
at risk of AD conversion, with some promising performance
(Mitchell, 2009; Ritchie et al., 2017; Vandenberghe et al., 2013;
Yuan et al., 2009). However, these methods are invasive and,
especially for PET imaging, have limited availability in clinical
practice. Ideally, a practical biomarker should be widely available,
accurate, cost-effective, relatively simple to interpret, easy to use,
and be acceptable to patients while not imposing an excessive
burden. It is important thatdbefore assessing a new bio-
markerdclear criteria for selection be established, and the likeli-
hood of meeting them be considered. As a minimum, the proposed
new biomarker should perform at least similar to simple, nonin-
vasive, and currently available biomarkers.

A type of noninvasive and more widely available biomarker is
provided by structural brain measurement obtained using MRI.
Cerebral cortical thickness and hippocampal measures are the most
predictive and practical MRI methods to date (Falahati et al., 2014;
Rathore et al., 2017). Although cerebral cortical thickness has been
shown to be more predictive compared to volumetric measures
based on single brain regions, it requires agreement on a standard
pattern of cerebral cortical thickness in AD to be adoptable in
clinical practice. Hippocampal volume, which has been shown to be
a moderate predictor of AD conversionwith a sensitivity of 67% and
specificity of 72%, has the advantage of being less invasive
compared to a CSF biomarker, less costly than a PET scan, and more
widely available and clinically easier to use compared to cortical
atrophy measures (Chupin et al., 2009). However, using hippo-
campal volume in the clinical setting is less straightforward
compared to the use of this measure in a research setting.

Hippocampal volume needs to be normalized by or adjusted for
intracranial volume (ICV) (Whitwell et al., 2001) to control for
intersubject (Barnes et al., 2010) and gender (Pintzka et al., 2015)
variations in head size, as well as variation in head size estimations
in serial scans (Whitwell et al., 2001). The most widely used
method in neuroimaging research is adjustment for ICV using its
inclusion as a covariate in regression analyses. A less commonly
used normalization approach is dividing the hippocampal volume
by another volume that can be accurately measured and is not
significantly impacted by neurodegenerative processes, typically
ICV. In this study, we investigate normalization by cerebellar vol-
ume (hippocampus to cerebellar volume ratio) as an alternative
approach, to correct for head size/premorbid brain volume as the
cerebellum has been shown to be little affected by age-related at-
rophy in the absence of clinical dementia. Neurodegeneration in AD
gradually progresses from the medial temporal lobe to the parietal
and frontal lobes and then to the posterior parts of the brain. The
cerebellum is among the last brain regions affected by AD pathol-
ogy (Thal et al., 2002). We have recently shown that cerebellar at-
rophy is not different in MCI compared to normal aging
(Tabatabaei-Jafari et al., 2017). Furthermore, while cerebellar atro-
phy increases in AD, it remains lower in other regions and partic-
ularly in the medial temporal lobe (Tabatabaei-Jafari et al., 2017).
Thus, using the cerebellum as a reference area should be both
methodologically robust and practical in a clinical context. Impor-
tantly, regional brain volume is more accurately measured than ICV
using semi-automated methods, such as FreeSurfer (Heinen et al.,
2016), and unlike ICV also less affected by field strength (Heinen
et al., 2016; Nordenskjold et al., 2013) and segmentation method
(Hansen et al., 2015; Keihaninejad et al., 2010; Malone et al., 2015).

Although hippocampal volume is not sufficiently accurate to be
clinically useful as a single predictor of MCI who progress to AD, it is
a useful benchmark. If other measures sufficiently improve the
predictive value of hippocampal volume, they may be worth for
further consideration. The MinieMental State Examination (MMSE)
may be a good candidate. A recent Cochrane review indicated that
the weighted sensitivity and specificity of the MMSE for conversion
from MCI to AD are 54% and 80% in a limited number of available
studies (Arevalo-Rodriguez et al., 2015). Moreover, evidence sug-
gests that a combination of cognitive measures and hippocampal
volume can improve the predictive value of hippocampal volume
for predicting AD conversion in MCI (Devanand et al., 2008).
Therefore, such a combination is also likely to improve on the
classification performance of hippocampal volume for identifying
MCI who convert to AD in short term from all those who do not
convert.

In the present study, we investigated the classification perfor-
mance of MMSE and hippocampal volume normalized by cerebellar
volume or ICV both individually and in combination, to identify
individuals with MCI who will convert to AD within 5 years. We
expected that these combinations of measures would have classi-
fication accuracies high enough to be useful in clinical practice.

2. Methodology

2.1. Study participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by a principal investigator, Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the pro-
gression of MCI and early AD.

A total of 1289 participants withMCI (n¼ 872) or CN (n¼ 417) at
baseline were considered for inclusion. All MCI participants who
were stable for at least 6 months after baseline and converted to AD
or reverted to CN within 5 years (confirmed with 2 consecutive
stable diagnoses) or were stable for at least 5 years were included.
Participants who were CN at baseline and were stable throughout
the study were also included.

Based on diagnosis and diagnostic change, participants were
categorized into 4 groups: (1) MCIc (N ¼ 187), MCI patients who
converted to AD in less than 5 years; (2) MCIs (N ¼ 112), MCI pa-
tients who were stable for 5 years or more; (3) MCIr (N ¼ 39),
MCI patients who reverted to CN in less than 5 years; and (4) CN
(N¼ 322), patients who remained cognitively healthy for thewhole
follow-up period.

Details of the diagnostic criteria can be found at the ADNI web
site (http://www.adni-info.org/Scientists/AboutADNI.aspx). Briefly,
participants were classified as CN if they had an MMSE greater than
24, had a clinical dementia rating (CDR) of 0, and did not meet
diagnostic criteria for MCI, dementia, or depression. Participants
were classified as MCI if they had an MMSE greater than 24, had a
CDR of 0.5, had a subjective report of memory concern, had an
objective memory loss, had preserved daily living activity, and did
not meet diagnostic criteria for dementia. AD participants have
MMSE scores less than 26, have a CDR of 0.5 or 1.0, and fulfill criteria
for clinically probable AD according to the Institute of Neurological
and Communicative Diseases and Stroke/Alzheimer’s Disease and
Related Disorders Association.

http://adni.loni.usc.edu
http://www.adni-info.org/Scientists/AboutADNI.aspx
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2.2. Neuroimaging acquisition and processing

Participants underwent high-resolution MRI brain scans on 1.5
(N ¼ 335) or 3T (N ¼ 325) scanners from General Electric, Siemens,
or Philips (Milwaukee,WI; Germany; the Netherlands, respectively)
using a standardized ADNI acquisition protocol for 3D MP-RAGE
sequence (Jack et al., 2008). Baseline images that had undergone
specific ADNI preprocessing correction steps to standardize images
from different sites and platforms were obtained for this study: (1)
grad wrap, a specific correction of image geometry distortion due to
nonlinearity; (2) B1 nonuniformity, B1 calibration to correct the
image intensity nonuniformity that results when RF transmission is
performed with a more uniform body coil while reception is per-
formed with a less uniform head coil; and (3) N3 correction, a
histogram peakesharpening algorithm applied after grad wrap and
B1 correction. We conducted automatic volumetric segmentation
using FreeSurfer (version 5.3, http://surfer.nmr.mgh.harvard.edu/),
and the output images were visually checked for the hippocampal
and cerebellar segmentations. The criterion was a clear segmenta-
tion error assessed by an experienced neuroscientist. Scans with
segmentation errors were reprocessed and would only be excluded
if the error could not be corrected. In this sample, no image was
excluded.
2.3. Measurements

ICV was computed by the sum of thewhole brain gray and white
matter and CSF volumes. Total cerebellar volume was computed by
summing the left and right cerebellar gray and white matter. Total
hippocampal volume was the sum of the volumes of the left hip-
pocampus and right hippocampus. Hippocampus to intracranial
volume ratio (HCICV) was the ratio of total hippocampal volume to
intracranial volume adjusted for age and field strength. Hippo-
campus to cerebellar volume ratio (HCCR) was the ratio of total
hippocampal volume to total cerebellar volume adjusted for age
and field strength. No significant correlation was detected between
HCICV (correlation¼�0.09) or HCCR (correlation¼�0.09) and ICV.
There was a moderate correlation between hippocampal volume
and MMSE (r ¼ 0.35, Supplementary Fig. 1). The residual method
was used for all adjustments implemented by running a regression
line between raw ratios and the variables using the whole data
(Pintzka et al., 2015).
2.4. Statistical analysis

Statistical analyses were performed using the R statistical soft-
ware (version 3.3.2). Data were checked for missing values and
univariate and multivariate outliers using Mahalanobis distance.
Discriminant analysis was used to estimate the predictive value of
HCICV, HCCR, MMSE, and their combination for clinical status. The
DiscriMiner package (version 0.01-29, https://CRAN.R-project.org/
package¼DiscriMiner) was used for descriptive discrimination
and the MASS (version 7.3-45, http://www.stats.ox.ac.uk/pub/
MASS4) and Caret package (version 6.3-73, https://CRAN.R-
project.org/package¼caret) for predictive discrimination (classifi-
cation). Data were evaluated for normality of all measures (Q-Q
plot), linearity, and multicollinearity and singularity (variation
inflation factor) assumptions of discriminant analysis, which were
all satisfied. Statistically significant heterogeneity of variance-
covariance matrices was observed (Box’s M-test; c2 > 51.19, p <

0.001), and therefore, a quadratic classification procedure was used
because linear discriminant analysis is known to perform poorly in
the presence of heterogeneous covariance matrices (Tabachnick
and Fidell, 2013).
For binary classification analyses using quadratic classification
procedure, MCIc was contrasted with (1) CN, MCIs, andMCIr pooled
together; (2) CN alone; and (3) MCIs and MCIr pooled together and
CN was contrasted with MCIs and MCIr pooled together. The sta-
bility of the classification procedurewas checked by a 10-fold cross-
validation. The sample randomly partitioned into 10 equal-size
subsamples. Nine subsamples (combined) were used as training
data, and the remaining single subsample was retained as the
validation data to evaluate predictive model. The process was
repeated 10 times, with each of the 10 subsamples used only once
as the validation data. The average of the results was provided with
confidence interval. We measured reliability using the Kappa co-
efficient, a chance-corrected measure of agreement between the
reference classification (categorized by long-term clinical follow-
up) and predictive classification (classifications based on study
measures) (Fritz and Wainner, 2001). The receiver operating char-
acteristic (ROC) curve (package pROC version 1.9.1, http://www.
biomedcentral.com/1471-2105/12/77/) and the area under the
curve (AUC) were used to estimate the discriminant capacity of
each model and DeLong’s test was used to compare different
models (Tabachnick and Fidell, 2013).
3. Results

3.1. Demography and brain measures

The average age of all participants together was 73.76 (SD ¼
6.80). Participants within the 4 diagnostic groups were similar in
age, except for MCIr who were 3 to 5 years younger. APOE e4 ge-
notypewas significantly higher, andMMSE scores were lower in the
MCI subgroups than those in the CN group. The average time for
MCIc to convert to AD and MCIr to revert to CN was similar at about
2 years. Baseline imaging measures showed that there was a trend
of ascending hippocampal volume (adjusted for age, field strength,
and ICV), HCICV, and HCCR values in MCIc, MCIs, MCIr, and CN. No
such trend was detected for cerebellar volume (Table 1).
3.2. Discriminant analyses; descriptive statistics

Discriminant analyses were conducted to evaluate discrimina-
tive performance of the HCICV-MMSE and HCCR-MMSE models.
Two discriminant functions were calculated for each model sepa-
rately. The first function significantly distinguished among the
diagnostic groups (HCICV-MMSE: F[6, 1310] ¼ 74.556, HCCR-
MMSE: F[6, 1310] ¼ 70.096) and accounted for 99.6% of prediction
of MCIc from CN, MCIs, and MCIr (first function’s eigenvalue/sum of
all eigenvalues� 100) in both models, whereas the second function
was not effective in distinguishing CN, MCIs, and MCIr. Predictive
values of the combination of HCICV and MMSE or HCCR and MMSE
were almost equal (equal standardized coefficient correlation of
predictors and discriminant functions) in the first discriminant
functions for distinguishing among the groups (Supplementary
Table 1).

The binary classification analyses revealed that HCICV, HCCR,
and MMSE were equally predictive of MCIc with loadings of more
than 0.5 on the discriminant functions (standardized coefficient
correlation) with large effect sizes (canonical R2 and eigenvalue) in
all contrasts. In comparison, the standardized coefficients in CN
group contrasted with MCIs and MCIr groups were more than 0.5,
but because the effect sizes were very low, the discriminant func-
tions were not effective in separating the groups (Supplementary
Table 1).
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Table 1
Characteristics: demographic information, MMSE, and brainmeasures. Trends of decrease in the average of MMSE and hippocampal measures are noticeable across the groups.

Diagnostic group CN MCIr MCIs MCIc Test of significance (p < 0.05)

Sample size 322 39 112 187 Across groups Significant pairs

Age; y, mean (SD) 74.55 (5.80) 69.33 (8.32) 72.08 (7.65) 74.31 (7.02) F (3) ¼ 10.09a CN vs. MCIr
CN vs. MCIs
MCIc vs. MCIr

Age range, y 59e90 55e87 57e88 55e89
Male sex; N (%) 158 (49) 17 (44) 72 (64) 113 (60) c2 (3) ¼ 12.68 All pairs are different
Education, y; mean (SD) 16.38 (2.74) 16.87 (2.38) 15.75 (3.03) 16.09 (2.73) F (3) ¼ 2.285 No difference in pairs
APOE e4; N (%) 82 (25) 19 (49) 40 (36) 127 (68) c2 (3) ¼ 90.63a All pairs are different
One allele 75 (23) 18 (46) 32 (29) 96 (51)
Two alleles 7 (2) 1 (3) 8 (7) 31 (17)

Age at DX change, y; mean (SD) - 71.38 (8.31) - 76.74 (7.15) - MCIc vs. MCIr
Time to DX change, y; mean (SD) - 2.06 (1.14) - 2.43 (0.91) - -
Measures
MMSE; mean (SD) 29.08 (1.14) 28.85 (1.23) 28.11 (1.48) 26.95 (1.72) F (3) ¼ 95.22a MCIc vs. CN

MCIs vs. CN
MCIr vs. MCIc
MCIs vs. MCIc

Hippocampus, mm3, mean (SD)b 7510.06 (807.29) 7210.85 (756.46) 7052.82 (909.03) 6240.78 (888.32) F (3) ¼ 89.32a MCIc vs. CN
MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

Cerebellum, mm3; mean (SD)b 121937.60 (9539.73) 120522.40 (9840.47) 121318.00 (10,337.83) 122673.50 (10,510.29) F (3) ¼ 0.458 No difference in pairs
HCICV; mean (SD) 0.50 (0.06) 0.47 (0.05) 0.46 (0.07) 0.41 (0.06) F (3) ¼ 87.86a MCIc vs. CN

MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

HCCR; mean (SD) 6.21(0.73) 5.99 (0.68) 5.85 (0.94) 5.09 (0.79) F (3) ¼ 79.83a MCIc vs. CN
MCIc vs. MCIr
MCIc vs. MCIs
MCIs vs. CN

Key: APOE e4, apolipoprotein E allele 4; CN, cognitively normal; DX, diagnosis; HCCR, hippocampus to cerebellum volume ratio � 100 adjusted by age and field strength;
HCICV, hippocampus to intracranial volume ratio� 100 adjusted by age and field strength; MCIc, mild cognitive impairment converted to Alzheimer’s disease in 5 years; MCIr,
mild cognitive impairment reverted to normal; MCIs, mild cognitive impairment stable for 5 years or more; MMSE, MinieMental State Examination.

a Indicates significance at p < 0.0001.
b Adjusted by age, field strength, and intracranial volume.
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3.3. Discriminant analysis; classification

3.3.1. Individual predictor classification
HCICV, HCCR, and MMSE performed similarly in identifying

diagnostic groups when tested individually and classified partici-
pants of the 4 diagnostic groups into 2 groups: CN and MCIc. A high
proportion of CN and MCIc were correctly classified, whereas the
majority of MCIs and MCIr were classified as CN and the remainder
as MCIc (Table 2).
Table 2
Group classification performance: predictors separate MCIc from CN but cannot separate M
MCIc

References MMSE HCICV HCCR

CN MCIc MCIs MCIr CN MCIc MCIs MCIr CN

Prediction
CN 293 71 76 33 272 70 78 29 283
MCIc 29 116 36 6 50 117 34 10 39
MCIs 0 0 0 0 0 0 0 0 0
MCIr 0 0 0 0 0 0 0 0 0

Sensitivity, % 91.0 62.0 - - 84.5 62.57 - - 87.9
Specificity, % 46.8 85.0 - - 47.6 80.13 - - 45.0
Pos Pred Value % 62.0 62.0 - - 60.6 55.45 - - 60.3
Neg Pred Value % 84.5 85.0 - - 76.3 84.41 - - 79.6
Prevalence, % 48.8 28.3 17.0 5.9 48.8 28.33 17.0 5.9 48.8
Accuracy (95% CI) 62.0 (58.1e65.7) 58.94 (55.1e62.7) 60.8 (
Kappa, % 33.3 28.90 31.3

Key: 95% CI, 95% confidence interval; CN, cognitively normal; HCCR, hippocampus to ce
intracranial volume ratio adjusted for age and field strength; MCIc, mild cognitive impai
reverted to normal; MCIs, mild cognitive impairment stable for 5 years or more; MMSE, M
Value, positive predictive value.
In binary classifications (Table 3), classification performance of
MMSE, HCICV, and HCCR was generally comparable and more
specific than sensitive for detecting MCIc from the other 3 groups:
classification accuracy from 77.6% to 78.9%, specificity from 90.9% to
92%, and sensitivity from 41.2% to 47.1%. Similar trends were
demonstrated in all other contrasts. ROC analyses demonstrated
no statistically significant difference between AUC for MMSE,
HCICV, and HCCR based on Delong’s test in all contrasts (Table 3 and
Fig. 1).
CIs andMCIr from others andmajority of themwere classified as CN andminority as

HCICV þ MMSE HCCR þ MMSE

MCIc MCIs MCIr CN MCIc MCIs MCIr CN MCIc MCIs MCIr

69 83 34 290 42 75 34 293 43 73 34
118 29 5 27 144 37 5 25 142 36 5

0 0 0 5 1 0 0 4 2 3 0
0 0 0 0 0 0 0 0 0 0 0

63.1 - - 90.1 77.0 - - 91.0 75.9 - -
84.6 - - 55.3 85.4 - - 55.6 86.1 - -
61.8 - - 65.8 67.6 - - 66.1 68.3 - -
85.3 - - 85.4 90.4 - - 86.6 90.1 - -
28.3 17.0 5.9 48.8 28.3 17.0 5.9 48.8 28.3 17.0 5.9

56.9e64.5) 65.8 (62.0e69.4) 66.4 (62.6e67.0)
41.1 42.1

rebellum volume ratio adjusted for age and field strength; HCICV, hippocampus to
rment converted to Alzheimer’s disease in 5 years; MCIr, mild cognitive impairment
inieMental State Examination; Neg Pred value, negative predictive value; Pos Pred



Table 3
Contrast classification performance: MCIc contrasted separately with all 3 groups together, other 2 MCI groups, and CN alone. CN also contrasted with MCIs and MCIr together.
In MCIc contrasts (with all groups or CN alone), predictors were mostly specific than being sensitive when they were not in combinations while combinations improved all
classification performances.

Measurements Classification
accuracy % (95% CI)

Kappa, % McNemar test,
p-value

Sensitivity, % Specificity, % Positive
predictive
value, %

Negative
predictive
value, %

LRþ LR
�

AUROC (95% CI)

MCIc vs. [CN þ MCIs þ MCIr]
MMSE 77.6 (74.2e80.7) 37.5 <0.0001 41.2 92.0 67.0 69.8 5.2 0.6 0.80 (0.76e0.84)
HCICV 78.9(75.6e82.0) 44.0 <0.0001 50.3 90.3 67.1 82.1 5.2 0.6 0.82 (0.79e0.86)
HCCR 78.5 (75.2e81.6) 41.8 <0.0001 47.1 90.9 67.2 81.3 5.2 0.6 0.82 (0.78e0.85)
HCICV þ MMSE 83.2 (80.1e86.0) 56.6 0.008 62.6 91.3 74.1 86.1 7.2 0.4 0.89 (0.86e0.91)
HCCR þ MMSE 83.5 (80.4e86.2) 57.9 0.0554 65.2 90.7 73.5 86.8 7.0 0.4 0.88 (0.85e0.91)

MCIc vs. CN
MMSE 80.4 (76.6e83.7) 55.7 <0.0001 62.1 91.0 80.0 80.5 6.9 0.4 0.84 (0.81e0.88)
HCICV 76.4 (72.5e80.1) 48.12 0.0828 62.6 84.5 70.1 79.5 4.0 0.4 0.86 (0.82e0.89)
HCCR 78.8 (75.0e82.3) 52.8 0.0053 63.1 87.9 75.2 80.4 5.2 0.4 0.85 (0.81e0.88)
HCICV þ MMSE 85.5 (82.1e88.4) 68.3 0.2010 77.0 90.4 82.3 87.1 8.0 0.3 0.93 (0.90e0.95)
HCCR þ MMSE 86.1 (82.7e88.9) 69.4 0.0576 76.5 91.6 84.1 87.0 9.1 0.3 0.92 (0.89e0.94)

MCIc vs. [MCIs þ MCIr]
MMSE 66.6 (61.3e71.6) 33.6 0.0084 62.0 72.2 73.4 60.6 2.2 0.5 0.72 (0.67e0.77)
HCICV 69.2 (64.0e74.1) 36.8 0.0241 78.6 57.6 69.7 68.5 1.9 0.4 0.75 (0.69e0.80)
HCCR 69.8 (64.6e74.7) 38.1 0.0376 78.6 58.9 70.3 69.0 1.9 0.4 0.75 (0.70e0.81)
HCICV þ MMSE 74.6 (69.6e79.1) 48.3 0.5898 78.6 69.5 76.2 72.4 2.6 0.3 0.81 (0.76e0.85)
HCCR þ MMSE 72.8 (67.7e77.5) 44.9 0.9170 75.9 68.9 75.1 69.8 2.4 0.4 0.80 (0.75e0.85)

CN vs. [MCIs þ MCIr]
MMSE 70.8 (66.5e74.9) 22.2 <0.0001 73.0 58.9 90.7 28.5 1.8 0.5 0.66 (0.61e0.72)
HCICV 69.1 (64.8e73.3) 12.7 <0.0001 93.8 16.6 70.6 55.6 1.1 0.4 0.65 (0.60e0.70)
HCCR 69.3 (65.0e73.5) 11.2 <0.0001 95.7 13.3 70.2 58.8 1.1 0.3 0.61 (0.55e0.66)
HCICV þ MMSE 70.4 (66.01e74.5) 20.4 <0.0001 91.0 26.5 72.5 62.0 1.2 0.3 0.70 (0.65e0.75)
HCCR þ MMSE 71.7 (67.4e75.7) 23.8 <0.0001 91.9 28.5 73.3 62.3 1.3 0.3 0.68 (0.63e0.73)

Key: 95% CI, 95% confidence interval; AUROC, area under receiver operating characteristic curve; CN, cognitively normal; HCCR, hippocampus to cerebellum volume ratio
adjusted for age and field strength; HCICV, hippocampus to intracranial volume ratio adjusted for age and field strength; LRþ, positive likelihood ratio; LR�, negative likelihood
ratio; MCIc, mild cognitive impairment converted to Alzheimer’s disease in 5 years; MCIr, mild cognitive impairment reverted to normal; MCIs, mild cognitive impairment
stable for 5 years or more; MMSE, MinieMental State Examination.
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Importantly, using ICV ratio to normalize the hippocampus or
using regression to adjust for ICV was separately assessed, which
was found to have little impact on the classification results
(Supplementary Fig. 2).

3.3.2. Combined predictors classification
The combination of predictors (hippocampal and MMSE)

improved almost all aspects of classification performance, but as for
individual predictor models, classification was optimal in classi-
fying participants into 2 groups: CN and MCIc. A high proportion of
CN and MCIc were correctly classified, whereas a majority of MCIs
and MCIr were misclassified as CN and a minority as MCIc (Table 2).

Almost all aspects of classification performance in all binary
classifications that identified MCIc from other groups (i.e., MCIc vs.
pooled of others, MCIc vs. CN, and MCIc vs. pooled of MCIs and
MCIr) were improved with the combination of HCICV or HCCR and
MMSE, when compared with the individual predictor. By contrast,
combination models did not show improvement in discriminating
CN group from pooled MCIs and MCIr groups (Table 3).

The discrimination ability (AUC of ROC analyses) of combina-
tions of HCICV or HCCR and MMSE was significantly better than
each predictor individually (Delong’s test; z < �4, p < 0.001), while
there was no significant difference between the HCICV-MMSE and
HCCR-MMSEmodels. In addition, analyses suggested that therewas
no difference in discrimination ability between the combination
models and MMSE alone in separating CN group from MCIs and
MCIr groups. By contrast, the combination of hippocampal ratios
(HCICV or HCCR) and MMSE was significantly better in discrimi-
nating MCIc from pooled MCIs and MCIr (Table 3 and Fig. 1).
Additional analyses investigating the ability to discriminate MCI
who convert within specified time periods (1e5 years) revealed
that performance was better in the first 3 years of follow-up
compared to the final 2 years (Supplementary Table 2).
Classification performance of the predictors in combination
(HCCR-MMSE and HCICV-MMSE), for discriminating MCIc from
other groups in all contrasts was generally substantial: classi-
fication accuracy for MCIc versus all other groups was more
than 83% with sensitivity between 65.2% and 62.6%, with a
specificity of 90.7%e91.3% and an AUC of 0.88e0.89. The per-
formance was even better when discriminating MCIc from CN
(Table 3).

Based on the partition plots in Fig. 2, individuals with MMSE
scores of less than 25 were mostly classified as MCIc regardless of
the HCICV and HCCR values. For individuals with higher MMSE
values, lower hippocampal ratios were observed in those who
were classified as MCIc. For example, for an MMSE score equal to
25, HCICV needed to be less than 0.6% or HCCR less than 7.5%, to be
classified as MCIc. The thresholds for HCICV or HCCR were 0.5%
and 6.3% for an MMSE of 26, 0.42% and 5.3% for 27, 0.38% and 4.8%
for MMSE for 28. HCICV or HCCR needed to be less than 0.35% and
4.3%, respectively, for MCIc diagnosis, when MMSE scores were
29e30. These thresholds were slightly smaller for discriminating
MCIc from CN.

4. Discussion

This study aimed to investigate the performance of hippo-
campal volume normalized to cerebellar volume as a new
measure for the clinical discrimination of MCI individuals at
risk of AD conversion within 5 years. A combination of HCCR
and MMSE was most effective in identifying MCI at risk of
conversion. The main findings were that (1) the combination of
HCCR or HCICV and MMSE and MMSE performed better in
classifying MCI at risk of AD conversion than each measure
individually; (2) the classification performance of HCCR and
MMSE was similar to that of HCICV and MMSE; and (3) CN and



Fig. 1. Receiver operating characteristic (ROC) curve for group membership: Area under the curve (AUC) revealed that in mild cognitive impairment converted to Alzheimer (MCIc)
contrasted with pooled of other groups (upper left) or cognitively normal (CN) alone (upper right), combination of MinieMental State Examination (MMSE) and hippocampus to
intracranial volume ratio (HCICV) or hippocampus to cerebellum volume ratio (HCCR) was better than each predictor separately. This was partially true for MCIc contrasted with
pooled of other mild cognitive impairment (MCI) groups (lower left), while not true for CN contrasted with other MCI groups (lower right).
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MCI who did not convert to AD within 5 years did not differ
statistically in their normalized hippocampal measures at a
particular MMSE score.
Among the brain areas implicated in AD neuropathology, hip-
pocampal shrinkage is most predictive of AD-related cognitive
dysfunction (Jack et al., 2000), and MMSE is the most widely used



Fig. 2. Partition plots: Thresholds of different hippocampus to intracranial volume (HCICV, right) or hippocampus to cerebellum ratios (HCCR, left) based on different MinieMental
State Examination (MMSE) scores, which separate mild cognitive impairment converted to Alzheimer (MCIc) from the pooled of cognitively normal (CN) and other mild cognitive
impairment (MCI) groups (upper) and from CN alone (lower).
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screening instrument for AD/dementia. We found that HCCR, a
new normalized hippocampal measure, performed similar to
HCICV in classification performance. Although none of HCICV,
HCCR, or MMSE reliably identified MCI individuals who pro-
gressed to AD alone, we confirmed that HCICV or HCCR in com-
bination with MMSE were effective in differentiating MCI patients
who progressed to AD from CN and MCI patients who did not
progress.
Both combinations were similar in performance and revealed a
high level of classification accuracy, particularly for discriminating
between MCIc and CN. However, classification accuracy only re-
flects the proportion of true results (positive or negative) in the
sample. To be practical and useful, a test needs to be sensitive and
specific. Our results revealed that of those with MCIc, 65.2%e62.6%
were correctly identified (satisfactory sensitivity) by the combina-
tion models (HCCRþMMSE or HCICVþMMSE), while 91.3%e90.7%
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of nonconverters (CN, MCIs, and MCIr) were correctly identified
(high specificity). Furthermore, in those who were positively
identified as MCIc, the likelihood of being truly MCIc was about
nine-fold that of those who were falsely identified as MCIc (high
positive likelihood ratio). For those who were positively identified
as MCIc, the likelihood of being MCIc was close to a third that of
those who were falsely identified as not having MCIc (low negative
likelihood ratio). Therefore, not only was the overall accuracy of the
combinations high, but the probabilities of false positive/negative
results were also acceptable. Altogether, the combinations of hip-
pocampal measures and MMSE are likely to be better than any
single measure in identifying individuals with MCI at risk of AD
conversion but also effective in ruling out those individuals unlikely
to convert within 5 years.

Interestingly, using either a combination of HCICV and MMSE or
HCCR and MMSE resulted in similar performance. This is important
because it indicates that normalization of hippocampal volume by
ICV or cerebellar volume is equally effective and thus validates our
approach. ICV estimation is more sensitive to scanning parameters
and segmentation methods than cerebellar volume. This is prob-
ably because ICV segmentation relies on the correct identification of
the boundary between the subarachnoid space and CSF fluid whose
contrast ismore variable to that between cerebellar graymatter and
CSF. Thus, cross-sectional comparison between patients (or longi-
tudinal within patients) assessed with different scanning parame-
ters may be more difficult when using the ICV ratio. Consequently,
in these contexts, normalization by cerebellar volume may be more
reliable and preferable.

The classification performance of HCICV and MMSE was in
agreement with previous studies (in spite of different study pa-
rameters) that revealed a sensitivity of 67% and specificity of 72% for
ICV-adjusted hippocampal volume and a sensitivity of 54% and
specificity of 80% for MMSE in identifying MCIc from CN (Arevalo-
Rodriguez et al., 2015; Chupin et al., 2009). Better performance
for the combination models was consistent and comparable with a
previous study that showed better prediction of a combination of
hippocampal volume, entorhinal cortex volume, MMSE, informant
report of functioning questionnaire, the University of Pennsylvania
Smell Identification Test, and Selective Reminding Test immediate
recall score with a sensitivity of 70% and a specificity of 90%
(Devanand et al., 2008). In addition, themodels’ performances were
comparable with other studies with combination of multiple mo-
dalities (including MRI and cognitive measures), which mostly had
many predictors in each modality (Costafreda et al., 2011; Ferrarini
et al., 2009; Moradi et al., 2015; Zhang et al., 2011). This suggests
that adding more predictors into a model may not necessarily
improve classification performance when the predictors are from a
single domain. Therefore, similar to the comparability of the current
findings with previous studies that used complex combinations of
predictors, the combination of HCCR and MMSE has the advantage
of being easily implementable and interpretable and thus may
facilitate clinical adoption.

It is interesting to note thatMCIs andMCIr did not differ from CN
based on the combination of HCICV or HCCR and MMSE while they
differed from MCIc. This suggests that those who are not at actual
risk of short-term AD conversion are not substantially different
from CN. A measure of concurrent decline in function and structure
is likely to be a better predictor of AD conversion in short term.

Most classification studies conducted to date were predomi-
nantly based on multidomain/multivariate predictors and thus too
complex to be easily adoptable in clinical practice. This study stands
out in its use of a combination of simple structural (HCCR) and
functional (MMSE) measures with a potential diagnostic value for
identifying MCI subjects at risk of converting to AD in 5 years easily
applicable in clinical practice.
5. Conclusion

The need to evaluate AD-related biological markers for identi-
fying those at risk of AD conversion and to include them in MCI
diagnosis has been well documented. However, there is no agree-
ment on a biomarker that can be effectively applied in clinical
practice. In the present study, we show that a combination of one
brain biomarker, either HCCR or HCICV, and MMSE can accurately
identify individuals at risk of AD conversion within 5 years. More-
over, normalization by cerebellar volume is as precise as normali-
zation by intracranial volume with the advantage of being more
practical in a clinical setting.
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