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A B S T R A C T

The availability of healthcare data has exponentially grown, both in quantity and complexity. The speed of this
evolution has generated new challenges for translating complex data into effective evidence-informed policy.
Visual analytics offers new capacity to analyze healthcare systems and support better decision-making. We
conducted a systematic scoping review to look for evidence of visual analytics approaches being applied to
mental healthcare systems and their use in driving policy. We found 79 relevant studies and categorized them in
two ways: by study purpose and by type of visualization. The majority (67.1%) of the studies used geographical
maps, and 11% conducted highly complex studies requiring novel visualizations. Significantly, only 15% of the
studies provided information indicating high levels of usability for policy and planning. Our findings suggest that
while visual analytics continues to evolve rapidly, there is a need to ensure this evolution reflects the practical
needs of policy makers.

1. Introduction

Health planners and policy-makers face complex decisions requiring
a deep knowledge of ‘healthcare systems’, which consist of all the or-
ganizations, people and actions involved in maintaining, restoring and
enhancing human well-being. The characteristics of healthcare systems
are considered as an important indicator of population health (e.g.,
quality of life for people in developing integrated smart systems for
cities or regions) (Ismagilova, Hughes, Dwivedi, & Raman, 2019). There
is significant variation in policy, funding and delivery of health care
across regions (Griffin et al., 2016). Understanding these differences
and how they impact on the health of communities requires reliable
evidence, and health planners can use this evidence to drive systematic
quality improvement of regional healthcare delivery.

The growing availability of healthcare data raises the prospect of
better evidence-informed decision-making. Healthcare systems involve

complex interactions between structures, processes, outcomes and
agents. They are characterized by nonlinearity, interconnectivity, self-
organization, constant change, variability and uncertainty
(Kannampallil, Schauer, Cohen, & Patel, 2011; Lipsitz, 2012; Long,
McDermott, & Meadows, 2018). Mental health care epitomizes this
complexity. Mental illness often has both health and social dimensions
(Salvador‐Carulla, Haro, & Ayuso‐Mateos, 2006). For health planners to
drive quality improvement, useful data must reflect the complexity of
mental health care. However, capitalizing on this evolution has been
hampered by difficulties in data analysis and limited human ability to
process information. (Caban & Gotz, 2015).

Visual analytics plays an important role in more effectively ana-
lyzing mental healthcare data. It refers to the suite of tools combining
automated analysis techniques with visualizations, and the analytical
capabilities of users, to capitalize on complex data to improve under-
standing and decision-making (Keim, Kohlhammer, & Ellis, 2010;
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Kohlhammer, Keim, Pohl, Santucci, & Andrienko, 2011; Ruppert,
2018). While traditional data analysis approaches such as statistics and
probabilities can be used to measure the complexity and uncertainty of
data, they are notoriously difficult to communicate effectively to deci-
sion-makers (Spiegelhalter, Pearson, & Short, 2011). Visual analytics
permits the synthesis of data from various sources, the communication
and use of complex data in exploring information, generating under-
standing, eliciting implicit knowledge and developing evidence-in-
formed decision-making (Lavis, Permanand, Oxman, Lewin, &
Fretheim, 2009; McInerny et al., 2014; Robinson, 2016). It also pro-
vides new capacity to derive insight from massive, dynamic and un-
certain data. It can detect expected and unexpected pattern informa-
tion; provide timely, defensible and understandable assessments; and
communicate these assessments effectively for action (Chung et al.,
2018; Kohlhammer et al., 2011; Ola & Sedig, 2016). Over the last
decade a range of visual analytics approaches have emerged and been
widely applied to scientific discovery and innovation in health sciences
such as infectious disease control (Carroll et al., 2014), personal health
information of patients (Faisal, Blandford, & Potts, 2013), and health-
care ecosystems research (Furst, Gandré, Romero-Lopez-Alberca, &
Salvador-Carulla, 2019). Despite the significance of these contributions,
the role of visual analytics has been largely unexplored in the scientific
literature on healthcare systems research and policy (Lavrač et al.,
2007; Moraga, 2017; Sopan et al., 2012).

In this scoping review, we summarize and analyze this evidence.
The objectives of this review are:

i) to investigate and identify the existing literature regarding the ap-
plication of visual analytics to mental healthcare systems;

ii) to map and categorize this literature according to study purpose (its
intended aim), data complexity, analytical methods, visualization
types, analytical results and interpretation, policy implication,
benefits and limitations of using visualizations; and

iii) to synthesize evidence demonstrating the practical application of
visual analytics to mental healthcare systems research and policy.

2. Material and methods

We conducted a systematic scoping review to identify and map the
literature concerning the application of visualization tools for analysing
healthcare systems and evidence-informed decision support in mental
health. This review identified and selected relevant studies, mapped
evidence; collated and summarized results and identified findings and
gaps in the research. Following published guidance on scoping reviews
(Arksey & O’Malley, 2005; Colquhoun et al., 2014; Levac, Colquhoun, &
O’Brien, 2010; Peters, Godfrey, McInerney et al., 2015; Peters, Godfrey,
Khalil et al., 2015), we used an iterative and parallel process to be
flexible in the search, screening, mapping and reviewing phases.

2.1. Data selection and evaluation

The scoping review focused on examining the following question: to
what extent are visualization tools applied to analyze mental healthcare
systems in supporting evidence-informed decisions? The search strategy
looked for studies where visualization tools were deployed to under-
stand complex mental healthcare systems. This meant our criteria to
identify studies in this review included several areas of mental health
care:

• mental healthcare services (local, regional, national and interna-
tional);

• population mental health and epidemiology;

• policy and legislation;

• resource availability and allocation; and

• involvement of domain experts in service delivery and planning.

Studies using visual analytics on clinical trials, genomic informa-
tion, individual decision-making and dashboards were excluded, unless
they addressed policy impact on mental healthcare resources and ser-
vices. Due to cost and time constraints we mainly included English-
language peer-reviewed studies (Arksey & O’Malley, 2005).

We identified the search terms and refined the selection criteria
further by reviewing a random sample of publications from the search
results. A comprehensive search was completed in July 2018 using the
final combination of search terms, (visual* OR graph* OR geograph*
OR geospatial OR spatial OR diagram* OR map*) AND (mental OR
psychiatr*) AND (decision OR policy OR plan* OR provision) AND
(health system OR health service OR health care), to three databases:
PubMed, Web of Science and Google Scholar. Duplicated publications
from different databases were arranged using a citation management
system (EndNote) and manually. The studies were then selected in steps
by title, abstract and full-text screening. For quality control purposes at
each step, two independent researchers (YC and KS) reviewed and ap-
plied the selection criteria to the studies in parallel. A third researcher
(JS) joined the agreement process to ensure that all relevant studies
were included in the review. We also conducted a citation search from
our own and colleagues’ records to identify additional studies known to
be missed from the database search. For inclusion in our search, access
to full-text of the studies was required. When this was not freely
available we made direct requests to authors.

Drawing on the search results, we collected evidence and iteratively
developed summary to evaluate the identified literature, according to
the following topics: study aim; study area (region); data type; layer of
analytical information; methodology; computational analysis; visuali-
zation type; study results; policy implication; and benefits and limita-
tions of using visualizations. Two independent researchers (EW and
MF) applied the summary topics to all included studies, and the process
was checked for consistency and accuracy by a third researcher (YC).
Any changes were discussed by both researchers and a final decision
arrived at through consensus with the third researcher.

2.2. Data analysis and mapping

We developed summary descriptions of the application of visuali-
zation tools to mental healthcare systems, showing the scope of the
research found. We have presented our findings not only to show how
visual analytics tools are currently used, but also to consider implica-
tions for future research and practice.

We developed a typology to categorize visualization types by the
key purpose or analytical tasks of each study, aiming to demonstrate
their variation as applied to mental healthcare systems. We then as-
sessed the tendency of the studies over time to identify gaps for future
work in mental healthcare systems research. The final aspect of this
scoping review assessed the practical applicability of the visual analy-
tics by evaluating the complexity and usability of the studies.

The complexity was measured using three attributes as seen in
Table 1:

1) the number of information layers to be analyzed and viewed using
visualizations;

2) the level of ‘graphicacy’ (the ability to understand and use a map or
graph) (Kennedy, 2015) for visual interpretation and communica-
tion; and

3) the complexity of computational analysis method to produce ana-
lytical information.

The complexity attributes were scored with the values of 0 (low)
and 1 (high) based on the sizes of data and variables used. We defined
the values of graphicacy based on the types of visualization tools, di-
vided into two categories (Pantazos, Lauesen, & Vatrapu, 2013):

1) tools that require advanced skills or knowledge from large audiences
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for interpreting its visual information in an unfamiliar form; or
2) tools that produce the visual information in familiar and predefined

way to large audiences requiring very basic skills or knowledge for
its interpretation.

The graphicacy was scored 1 if a study used visualization tools that
require advanced skill of knowledge, otherwise 0. Two researchers (YC
and JS) separately scored the graphicacy of the main visualization
graph used in each study. To make scoring fairer, the two researchers
referred to the benefits and limitations of the visualization tools as
discussed in the publications. The interrater reliability of the graphi-
cacy scores was measured using the Kappa coefficient (k) to synthesize
the quality of the evaluation results (Cohen, 1960; McHugh, 2012). For
quality control and final decision on the scores, a third researcher (NB)
joined the process. A final decision on the graphicacy scores was
reached through consensus with the third researcher. The aggregation
of these scores provided the complexity levels from 0 to 3 (from low to
high) in our review.

The usability was measured using another three attributes as de-
scribed in Table 1:

1) the funding strategy (e.g., direct funding or co-funding from health
organizations and public agencies);

2) the participation of domain experts (e.g., stakeholders with co-au-
thorship); and

3) the policy impact of the study (e.g., reference to a specific policy
problem in the study).

The usability attributes were also scored with the values of 0 and 1
based on ‘no’ and ‘yes’ categories, respectively. The funding strategy
was scored 1 if a study was supported by any relevant local or global
health organizations, otherwise 0. The participation of domain experts
was scored 1 if any non-academic experts were involved in a study,
otherwise 0. The policy impact was scored 1 if there was a specific
statement linking the study to a policy problem. In order to assess the
overall usability, we provided the aggregated scores of these three at-
tributes from 0 to 3 (low to high).

3. Results

The database search yielded a total of 2413 publications. This was
reduced to 2012 after removal of duplicates (see Fig. 1 for a summary of
the screening process). After screening titles and abstracts from the
search results, we found 131 publications and identified a further 23
publications based on our knowledge, meaning the initial selection
included 154 publications for the full-text screening. We were unable to
retrieve the full-text of four publications so they were excluded from the
full-text screening. Another 71 publications were also excluded as they
did not meet the inclusion criteria described above. After the full-text
screening, a total of 79 publications were selected for final inclusion in
the scoping review. The topic of the included studies was extracted for
review and comparison in a summary table (refer to Appendix).

3.1. Conceptual mapping of visualizations

The 79 studies were mapped into a conceptual framework (see
Table 2). This framework allowed us to apply the typology developed to
categorize the studies by visualization type and study purpose/analy-
tical tasks. Three main tasks were identified: descriptive; non-geospatial
and geospatial analysis. The first two tasks involve abstract information
that do not require geospatial information while the latter requires
geospatial information for their data analyses (Tory & Moller, 2004).
While descriptive analysis was defined for relatively simple bivariate
data with statistical measures, non-geospatial analysis was defined for
multivariate data with more complex measures (e.g., using multiple
regression or multi-dimensional scaling methods) in this review. The
visualizations were then further categorized into six broad types: geo-
graphical map; mixed geographical map and other graphs; association
graphs; variation graphs; diagram; and novel visualizations, referring to
analytical targets (e.g., data, attributes, network and geospatial)
(Munzner, 2014). Graphs such as bar, curve and scatter plots were
considered as ‘association graphs’ if they were used for studies on as-
sociation analysis that included analysis of correlation, prediction,
clustering, and pattern. Graphs such as bar, line and radar plots were
considered as ‘variation graphs’ if they were used for studies on var-
iation analysis that included analysis of spatial and/or temporal change
and difference comparison.

As seen in Table 2, 40.5% of the included studies referred to geos-
patial studies related to service access, variation, association and uti-
lisation. All these geospatial studies used geographical maps for visual
analytics. Half of them also used other supported graphs for association
analysis. Many of the descriptive studies focused on variation analysis
and used variation graphs. Many of these descriptive studies also used
geographical maps to present the descriptive information. Geographical
maps were also used for some of non-geospatial studies. Overall, 67.1%
of the studies in this review used geographical maps for analyzing
healthcare systems in mental health. The rest of the studies used other
visualization techniques (association or variation graphs based on their
tasks). Only a small number of the studies (2.5%) attempted to use
relatively novel visualization forms (e.g., Cluster Panel Map and Self-
Organising Map) when analyzing complex patterns of mental health-
care systems.

3.2. Tendency mapping of studies

We mapped our evaluation of the 79 identified studies into the three
main tasks (descriptive, geospatial and non-geospatial analysis), by 5-
year periods. As shown in Fig. 2, the earliest study was conducted in
1988, analysing non-geospatial (abstract) information of mental
healthcare systems. Studies on descriptive analysis were the most
common task between 2000 and 2004. Since 2005 the most common
task has been geospatial analysis, with non-geospatial analysis emer-
ging more recently, reflecting increased demand for understanding
complex mental healthcare systems at a high (abstract) level.

Using the same periods, we also mapped the studies by geographic
origin. As shown in Fig. 3, the majority (32 studies, 41.25%) of the
studies were European (Spain, UK, France, Italy, Germany, Switzerland,
Sweden and Netherlands) with 36.25% (30 studies) from North

Table 1
Measures of the study complexity and usability.

Study Evaluation Attribute Score Note

Complexity Information Layer 0 (low) / 1 (high) Visualized information
Graphicacy Level 0 (basic skill) / 1 (advanced skill) Targeted domain experts
Computational Complexity 0 (low) / 1 (high) Applied algorithms

Usability Funding Strategy 0 (no) / 1 (yes) Health organization funding?
Expert Participation 0 (no) / 1 (yes) Non-academic experts?
Policy Impact 0 (no) / 1 (yes) Intention of policy impact?

Y. Chung, et al. International Journal of Information Management 50 (2020) 17–27

19



Fig. 1. The search decision and screening flowchart.

Table 2
The conceptual mapping of visualization types based on analytical tasks of the studies (associated with Table 3).

Analytical tasks Visualization Type No. of
studies

Total No. of
studies (%)

Geographical map Geographical
map+ other graphs

Association
graphs

Variation
graphs

Diagram Novel
visualizations

Descriptive Variation 9
[1][2][5]
[7][11][17]
[21][28][49]

2
[20][39]

7
[18][19][33]
[36][52]
[64][75]

18 21 (26.6%)

Association 1
[26]

1
[50]

2

Pathway 1
[3]

1

Non-geospatial Variation 1
[15]

4
[12][22]
[23][57]

5 26 (32.9%)

Association 6
[24][31][37]
[41][53][60]

1
[56]

9
[6][9][30]
[35][62][68]
[69][74][79]

1
[61]

2
[14][27]

19

Pathway 2
[32][66]

2

Geospatial Variation 4
[4][16]
[38][76]

2
[13][54]

6 32 (40.5%)

Association 8
[10][43][48]
[51][63][65]
[72][78]

8
[45][46][47][58] [59]
[67]
[71][77]

16

Hotspot 9
[8][29][34]
[40][42][44]
[55][70][73]

1
[25]

10

Total No. of studies (%) 38
(48.1%)

15
(19.0%)

10
(12.7%)

11
(13.9%)

3
(3.8%)

2
(2.5%)

79 (100%) 79 (100%)
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America (USA and Canada), followed by 11.25% (8 studies) from
Oceania (Australia and New Zealand). While New Zealand in Oceania
was responsible for the earliest study (1988) recorded in this review,
most of the studies across all regions have been conducted since 2005.
Visual analytics is a contemporary phenomenon. The studies on mental
healthcare systems in Europe began in 1995 increasing from 2005 to be
the main source of the research worldwide. North America showed a
steady pattern, with minimal study rates in other world regions such as
Asia and Africa.

3.3. Practical applicability evaluation of visual analytics

This part of our study focused on assessing the extent to which the
79 visual analytics studies could be seen to be practically influencing
policy and decision-making. Based on the complexity and usability le-
vels measured for all 79 studies, a matrix with 16 different value
combinations was developed to assess the practical applicability of vi-
sual analytics for mental healthcare systems research and planning. The
interrater reliability of the graphicacy scores given to the visualization

Table 3
The list of publications included in the review and associated with Table 2.

(1) (Allard, Rosen, & Tolman, 2003)
(2) (Allard, Tolman, & Rosen, 2003)
(3) (Allen, LeMaster, & Deters, 2004)
(4) (Almog, Curtis, Copeland, & Congdon, 2004)
(5) (Andrilla, Patterson, Garberson, Coulthard, & Larson, 2018)
(6) (Asthana, Gibson, Hewson, Bailey, & Dibben, 2011)
(7) (Baldwin et al., 2006)
(8) (Banta, Wiafe, Soret, & Holzer, 2008)
(9) (Borgoni, Smith, & Berrington, 2015)

(10) (Campbell & Ballas, 2016)
(11) (Carson et al., 2016)
(12) (Chang et al., 2014)
(13) (Cheung, Spittal, Pirkis, & Yip, 2012)
(14) (Chung et al., 2018)
(15) (Coldefy & Curtis, 2010)
(16) (Cummings, Allen, Clennon, Ji, & Druss, 2017)
(17) (Ellis, Konrad, Thomas, & Morrissey, 2009)
(18) (Fernandez et al., 2017)
(19) (Fernandez et al., 2015)
(20) (Fleming, McGilloway, & Barry, 2016)
(21) (Foley & Platzer, 2007)
(22) (Gandre et al., 2018b)
(23) (Gandre et al., 2018a)
(24) (Garrido-Cumbrera et al., 2008)
(25) (Ghosh, Sterns, Drew, & Hamera, 2011)
(26) (Gleeson, Hay, & Law, 1998)
(27) (Green & Aarons, 2011)
(28) (Green et al., 2013)
(29) (Guerrero & Kao, 2013)
(30) (G. Hall et al., 2016)
(31) (G. B. Hall, 1988)
(32) (Hashimoto et al., 2015)
(33) (He et al., 2016)
(34) (Wong & Stanhope, 2009)
(35) (Jia, Muennig, Lubetkin, & Gold, 2004)
(36) (Johnson, LaForest, Lissenden, & Stern, 2017)
(37) (Koizumi, Rothbard, & Kuno, 2009)
(38) (Law & Perlman, 2018)
(39) (Lin, Chen, & Chou, 2012)
(40) (Mathis, Woods, & Srihari, 2018)
(41) (Maylath, Seidel, Werner, & Schlattmann, 1999)
(42) (Mayne, Morgan, Jalaludin, & Bauman, 2018)
(43) (Metraux, Brusilovskiy, Prvu-Bettger, Irene Wong, & Salzer, 2012; Moreno, Garcia-Alonso,

Hernandez, Torres-Gonzalez, & Salvador-Carulla, 2008)

(44) (Moreno et al., 2008; Stulz, Pichler, Kawohl, & Hepp, 2018)
(45) (Moriarty, Zack, Holt, Chapman, & Safran, 2009)
(46) (Moscone & Knapp, 2005)
(47) (Moscone, Knapp, & Tosetti, 2007)
(48) (Ngui, Apparicio, Moltchanova, & Vasiliadis, 2014)
(49) (Okoro et al., 2011)
(50) (Pedersen & Lilleeng, 2000)
(51) (Qi, Hu, Page, & Tong, 2012)
(52) (Raja, Wood, de Menil, & Mannarath, 2010)
(53) (Rodero-Cosano et al., 2016)
(54) (Ronzio, Guagliardo, & Persaud, 2006)
(55) (Salinas-Perez, Garcia-Alonso, Molina-Parrilla, Jorda-Sampietro, &

Salvador-Carulla, 2012)
(56) (Stahler, Mennis, Cotlar, & Baron, 2009)
(57) (Strum, Ringel, & Andreyeva, 2003)
(58) (Stulz et al., 2018)
(59) (Takahashi et al., 2017)
(60) (Tibaldi et al., 2005)
(61) (Trani, Ballard, Bakhshi, & Hovmand, 2016)
(62) (Vazquez-Polo et al., 2005)
(63) (Walker, Hurvitz, Leith, Rodriguez, & Endler, 2016)
(64) (Wu et al., 2016)
(65) (J. Zhang et al., 2014)
(66) (W. Zhang et al., 2013)
(67) (Zulian et al., 2011)
(68) (Hudson, 2010)
(69) (Alvarez-Galvez, Salinas-Perez, Rodero-Cosano, & Salvador-Carulla,

2017)
(70) (Bagheri, Wangdi, Cherbuin, & Anstey, 2018)
(71) (Chaix et al., 2006)
(72) (Curtis et al., 2006)
(73) (García-Alonso, Salvador-Carulla, Negrín-Hernández, & Moreno-

Küstner, 2010)
(74) (Gibert, García-Alonso, & Salvador-Carulla, 2010)
(75) (Gutiérrez-Colosía et al., 2017)
(76) (Kirkbride et al., 2007)
(77) (Ngui et al., 2013)
(78) (Salinas-Pérez, Rodero-Cosano, García-Alonso, & Salvador-Carulla,

2015)
(79) (Torres-Jiménez, García-Alonso, Salvador-Carulla, & Fernández-

Rodríguez, 2015)

Fig. 2. The tendency of the studies based on 5-year periods for different analytical tasks.
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tools showed substantial agreement (k= 0.71) for measuring the
complexity of the studies.

As shown in Fig. 4, visual analytics was applicable for most of the
moderately useable studies through all levels of the study complexity
(10%+18%+9%+5%+8%+22%+4%+5%=81%). However, the
practical applicability of visual analytics appeared relatively low for
highly complex studies (5%+5%+1%=11%) and very low for these
studies even if they were able to demonstrate strong support from re-
levant health organisations. Only 15% (3%+8%+3%+1%) of the
studies provided information that indicated high levels of usability in
policy and practice. The practical applicability of visual analytics also
appeared very low for studies that were not able to demonstrate any
support from a relevant health organization and none if they were very
complex. Fig. 4 also shows the distribution of three main visualization
types (geographical maps, graphs/diagrams, novel visualizations) used
for the studies by impact rating. This demonstrates low practical ap-
plicability of visual analytics involving high complexity and usability,
as more novel visualization approaches were required to generate im-
pact.

4. Discussion

Given the growing availability of data in health care, there is an
increasing need for investment in visual analytics approaches to assist
evidence-informed decision-making (Robinson, 2016). Mental health
should be a high priority area for these developments due to: its mixture
of health and social care needs; the complexity and ambiguity of mental
disorders; and the interface between mental and physical care
(Salvador‐Carulla et al., 2006). To our knowledge, this is the first at-
tempt to conduct a scoping of the literature related to the application of
visual analytics to mental healthcare systems. It has incorporated a
method for categorizing and assessing the literature on this topic.

4.1. Findings and gaps

This review reveals three main findings. First, much of the existing
literature refers to the use of geographical maps in understanding
mental healthcare systems. This has limited capacity to represent
complex non-geospatial information at a high level. The second notable

Fig. 3. The tendency of the studies based on 5-year periods worldwide.

Fig. 4. The practical applicability levels of visual analytics for mental healthcare systems research and policy. The bubble size indicates the percentage of studies at
each level.
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finding is the increase of non-geospatial studies. This shows that a key
emerging challenge for researchers is to select the visualization tools
best suited for the study task and audience. The third interesting finding
is the absence of literature indicating where the application of visual
analytics with highly complex data has actually driven policy or
funding decisions. In other words, it is not easy to find clear evidence
that visualization techniques have actually been useful to decision-
makers. There is clearly a need to ensure that health organizations and
public agencies better understand the value of visual analytics so that it
becomes part of routine practice in decision-making. Other findings to
note are the regional differences identified in the number and sophis-
tication of studies using visualization tools. Although this issue was not
a key part of the scope of this review it is interesting to note European
leadership in the field.

Our review suggests that studies using only geographical maps may
not be the best way to present complex information and associations.
Throughout the 1990s, the Geographic Information System (GIS)
technology has been widely adopted for geospatial studies both in re-
search and practice (Tate, 2018). Its application in mental healthcare
systems planning took off in the 2000s, as data became more available
across Europe, North America and Oceania. However, the increase of
literature on non-geospatial analysis of large and complex mental
healthcare systems has required novel visualization technologies with
the use of Artificial Intelligence (AI) techniques for evidence-informed
knowledge discovery and decision support (Duan, Edwards, & Dwivedi,
2019). Most visualization tools face considerable challenges in trying to
display complex and multidimensional information that is analysed
using AI techniques but does not require geospatial information. It is
difficult to incorporate necessary abstract information into geo-
graphical maps given these maps rely on fixed geospatial information.
Surmounting this problem requires incorporating additional visualiza-
tions (e.g., graphs or symbols) into geographical maps, using alter-
natives, or developing novel visualization approaches. Various visuali-
zation methods are available and can be tailored depending on the task.
This review indicates that the diversity of visualization tools applied to
mental healthcare systems is still low considering the alternatives
available (Spiegelhalter et al., 2011). Common visualization tools cur-
rently used in other thematic areas, such as alluvial diagrams, rose-like
graphs and roulette wheels (Grant, 2015), are rarely used in mental
healthcare systems research and evidence-informed policy planning.

Visualisation plays an important role in incorporating domain ex-
perts in the whole process of Knowledge Discovery in Databases (KDD)
and supporting evidence-informed decisions by domain experts
(Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Gibert, Sànchez-Marrè, &
Codina, 2010; López, Sanchez, & Micó, 2014; Thornicroft, Ruggeri, &
Goldberg, 2013). Understanding complex mental healthcare data also
requires the engagement of domain experts in the process of KDD (pre-,
mid- and post-processing phases) (Chung et al., 2018). The interactive
capacity of visual analytics enables domain experts to sort, filter and
explore data. There is evidence that this interaction leads to better
understanding, clearer communication and increased likelihood that
the analysis will effectively influence practical decision-making (Gatto,
2015). This has increasingly filled a crucial information gap when
analysts and domain experts come to explore and communicate the
wealth of information being produced particularly in the mid-proces-
sing phase of KDD, between the development of expert prior knowledge
and the interpretation of analytical results (McInerny et al., 2014;
Salvador-Carulla et al., 2010).

However, identifying and displaying meaningful abstract informa-
tion using visualizations remains a challenge for several reasons. First,
some domain experts may have limited graphicacy skills. Their skills
may be further tested due to the size and complexity of the data pre-
sented. Also, some visual analytics tools might be difficult for the tar-
geted audience (e.g., policy-makers) to use and understand. The richer
and more complex information presented using visual analytics tools
might make it difficult to establish clear understanding about what to

do or what messages to communicate. This might influence the late
adoption and diffusion of visual analytics in healthcare systems re-
search and policy. A multidisciplinary collaboration (e.g., infography,
visual arts and marketing) with domain experts in the development of
visual analytics can be highly relevant for improving the use of novel
visualization tools by decision-makers. There will be huge opportunities
for studies to engage domain experts, improve the use of visualizations
and drive increased research efforts (Kohlhammer et al., 2011;
McInerny et al., 2014).

4.2. Strengths and limitations

The key strength of this scoping review is its originality - the
practical applicability of visual analytics to mental healthcare systems.
It is hoped our findings allow researchers and domain experts to obtain
a strategic view of the potential power of visual analytics to drive better
policy and decision-making in mental health care. Our approach re-
quires corroboration by other research groups. Our strong involvement
in mental healthcare systems research may have produced a selection
bias. We have tried to overcome this issue by incorporating in-
dependent raters (KS and EW) who were not previously involved in this
research. The review should trigger continued debate about the direc-
tion of growth of visual analytics for evidence-informed decision-
making in mental health and beyond.

The main limitation of our review is the extent to which the search
strategy does not list all visualization types currently available. Our
search strategy put more weight on the geospatial terms for visualiza-
tion and, as a result, we may have missed some relevant literature on
novel visualizations. Similarly, since we focused on visual analytics for
mental healthcare systems, other mental health studies were not con-
sidered in this review. This could have resulted in missing some re-
levant studies from the initial screening phases, or the search terms
could not index them properly in the database search. To address any
gap, we conducted a citation search for the review and considered a
further 23 publications at the full-text screening phase. A final limita-
tion was that overall there seemed to be a paucity of relevant literature,
meaning our eventual sample size was small.

4.3. Future work

The emergence of specialists and visual analytics laboratories both
in academia and in the public sector is already apparent and important.
The increasing interest in this topic will guide the next stage of evo-
lution of visual analytics technology and eventually result in better
tools to influence policy, funding and the quality of services for people
with mental illnesses. This could include the suitability of visual ana-
lytics technologies in response to the recent evolution of digital health
services towards gamification (Koivisto & Hamari, 2019), amazonifi-
cation (Desjardins, 2018) and real-time dashboard initiative (Kitchin,
Lauriault, & McArdle, 2015). These techniques are critical in devel-
oping, monitoring and supporting digital health services and activities
to design effective mental healthcare interventions for right people at
right places (Dwivedi, Shareef, Simintiras, Lal, & Weerakkody, 2016).
The great challenges ahead are developing novel visualizations; in-
creasing the graphicacy skills of domain experts in relation to visual
analytics technology; and improving the quality of information gener-
ated by new visualization tools.

Another area for future research is a detailed analysis of specific
areas of visualization such as the use of geographical maps over other
visualizations. Given its predominance in the sector, a systematic re-
view on this type of visualization would be desirable. It may also be
relevant to explore national and regional differences in the develop-
ment and use of visualization tools identified in this review. The
adoption of systems thinking and complexity approaches to mental
health planning in Europe and the priorities of European health funding
schemes could have played a role in these findings (Dattée & Barlow,

Y. Chung, et al. International Journal of Information Management 50 (2020) 17–27

23



2010; Forsman et al., 2015; Hazo et al., 2017; Iruin-Sanz, Pereira-
Rodríguez, & Nuño-Solinís, 2015).

Finally, this scoping review can contribute to the future develop-
ment of a framework or guidelines for the use of visual analytics tools in
mental healthcare systems research. Such a framework would help re-
searchers and decision-makers capitalize on these tools, choosing the
most appropriate and useful to meet their needs.

5. Conclusions

This systematic scoping review was conducted to illustrate the ap-
plication of visual analytics to data analysis and decision support in
mental health systems settings. It presents a sample of the variety of
work being performed around the world. This review demonstrates the
complexity of data, the type of study, the type of visualizations and the
impact of visual analytics as practically applied to mental healthcare
systems and policy planning. Our findings indicate that most of the
studies used geographical maps for visual analytics of mental health-
care systems. The dearth of visualization tools providing abstract in-
formation for highly complex data indicates a major gap between ex-
isting and novel visualization methods as applied to mental health.
Continuing to develop visual analytics approaches, engaging domain
experts in better understanding the role of visual analytics and ensuring
their genuine impact in better decision-making are the key next steps
for this emerging research area.
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