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ARTICLE INFO ABSTRACT

Background: Local shape complexity can be biologically meaningful as a marker of disease, trauma, or change in
brain structure over time. Fractal dimensionality (FD) is currently the dominant measure of local shape com-
plexity used in neuroimaging but its limitations are not well understood.

New method: Elliptical Fourier harmonic power requirement (HPR) may provide complementary information to
FD. We benchmarked the performance of FD and HPR on a series of simulated shapes, systematically manip-
ulating aspects of local shape complexity, and a series of clinical contours (glioma tumour cores and stroke
lesions from the BRATS and ATLAS datasets). HPR was calculated as the point of 99.9% harmonic power. FD was
calculated at six resolutions (8 x 8, 16 x 16, 32 X 32, 64 x 64, 128 x 128, and 256 x 256), by using an ap-
proach which computationally indexes the complexity of the shape boundary (i.e. the number of cells defining
the contour) relative to the total grid size.

Results and comparison with existing methods: PR and FD were moderately positively correlated (r = 0.2 to 0.8
depending on shape properties), and both were sensitive to the frequency and amplitude of local complexity. FD
was most biased by rotation, while HPR was more biased by global shape features such as deep invaginations. FD
indicated an aggregate measure of complexity across the whole contour, while HPR indicated the point of
highest complexity.

Conclusions: The HPR index provides conceptually distinct local complexity information from the current FD
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standard. Future research will benefit from using these complementary measures.

1. Introduction

Local shape complexity in structural neuroimaging shows promise
in differentiating healthy from pathological brain development, ageing,
and disease, particularly when gross morphological characteristics are
insensitive or unclear (Di Ieva et al., 2015; Madan and Kensinger,
2017). The most commonly used measure, fractal dimensionality (FD),
deconstructs shapes into grids of varying dimensions (Di leva et al.,
2015, 2014; Madan and Kensinger, 2017). The grid cells (“boxes”)
denoting the outer contour are counted, and the relationship between
box count and grid size indicates shape complexity: as box size de-
creases, box count increases, so the steeper the slope of this association,
the greater the complexity (Di Ieva et al., 2014). While this approach
has proven useful in neuroimaging, particularly for quantifying age-
associated cortical and subcortical changes in brain structure and as a
surrogate biomarker for brain damage and neurological alterations in
disease (Di leva et al., 2015), it has yet to be benchmarked across

different forms of local complexity, such as puckering (as may be in-
curred during cancer tumour growth), or randomly distributed ragged
lesions (as may be observed in lesions following stroke).

We propose an alternative method for exploring shape complexity.
Elliptical Fourier (eFourier) has been applied in the neuroimaging lit-
erature to examine global shape (Ferrario et al., 1994). eFourier tech-
niques deconstruct shape into a series of overlapping trigonometric
harmonics which deform an ellipse, where low amplitude harmonics
(fit first) capture lower frequency shape characteristics, while higher
amplitude harmonics (fit later) capture higher frequency shape char-
acteristics (Caple et al., 2017; Kuhl and Giardina, 1982). Local com-
plexity is high frequency information, so higher amplitude harmonics
capture local shape information after global shape has been established
by lower amplitude harmonics. It follows that the point where optimal
shape fit is reached (denoted by 99.9% harmonic power) is a possible
index of local shape complexity. The concept of harmonic power is not
new, as it is widely used to calibrate the number of harmonics required
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in Fourier analysis. Our approach of using it explicitly as a measure of
local complexity is novel. We call this the Harmonic Power Require-
ment (HPR).

These methods are most distinct in whether they reflect average
complexity over an entire contour (as in FD, which is calibrated against
the total box count of the whole contour), or only the most complex
part (as in HPR, which is calibrated against the highest frequency re-
quired anywhere on a contour). This is meaningful in circumstances
when only a sub-section of a topical neural shape may exhibit local
complexity. Accordingly, benchmarking and comparison of both
methods will clarify their sensitivity, specificity and comparative
properties for measuring local shape complexity.

2. Materials and methods

All work was undertaken in R version 3.2.0 using original code, and
the rgeos (version 0.3.15), shapes (version 1.1.11), and sp (version
1.2-3) packages.

2.1. Measures of local complexity

The methods for ascertaining local complexity are summarized vi-
sually in Fig. 1. Elliptical Fourier analysis of contours and calibration to
detect the point of 99.9% harmonic power was undertaken in the Mo-
mocs package (version 0.9.48), as described in Bonhomme et al. (2014).
Briefly, as outlined in Kuhl and Giardina (1982), elliptical Fourier
analysis comprises deformation of an ellipse via pairs of harmonics for
the x (A,, Bp) and y (C,, D,) axes. As shown in Fig. 1 (panel A), each
additional harmonic (A;/B,/C:/D1, A5/B5/C5/Ds ... A10/B10/C10/D10,
etc) increases the detail captured, as higher frequency harmonics cap-
ture higher frequency shape features such as corners. The utility of
additional harmonics is subject to diminishing returns that is a function
unique to each shape (Fig. 1, panel C), thus harmonic power is typically
used to ascertain the point at which additional harmonics do not im-
prove shape fidelity. Harmonic power at any given n as w.
This formula is applied in a cumulative sum for 1-n harmonic series
until 99% power is reached. Classically, this is interpreted as sufficient
harmonic power for later global shape analysis with the number of
harmonics being of little theoretical interest; the current interpretation
re-contextualizes this existing metric as a meaningful index of local
complexity.

For FD, the raster (version 2.4.20) and sp (version 1.2-1) packages
were used to decompose shapes into varying grid sizes (e.g. Fig. 1 panel
A) based on typical MRI resolutions for subcortical structures (8 x 8,
16 x 16, 32 X 32, 64 X 64, 128 X 128, and 256 x 256). Unlike HPR,
fractal dimensionality is a linear association between grid size and
number of boxes denoting the shape’s contour on that grid (Fig. 1 panel
C), calculated as in Madan and Kensinger (2017),

Alog, (border count)
Alog, (grid size)

FD =

The resolution of FD is bounded by the grid provided, and it natu-
rally ranges between 1 and 2 (an artefact of referring to two-dimen-
sional contours). The resolution of HPR is bounded by the number of
points denoting the contour (as one needs twice as many points as
harmonics in order to fit an eFourier curve, again reflecting the two-
dimensional nature of the contours). HPR has a lower bound of 1
(which will always be an unmodified ellipse), and theoretically no
upper bound: with an arbitrary number of points there can be an ar-
bitrary number of harmonics. To our knowledge there has been no
benchmarking of HPR to establish rigorous expectations of where
99.9% harmonic power is likely to be reached, but in practise there is
limited meaningful detail in most contours, and so it is most common to
use comparatively few (between 10 and 24 harmonics). Accordingly,
we have imposed an upper bound of 100 harmonics, thus a theoretical
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maximum HPR of 100, but expect substantially lower values.

As the purpose of the current paper is the relative performance of FD
and HPR within a constrained set of shapes (rather than the establish-
ment of norms), for clarity of comparison, HPR and FD were scaled into
z scores relative to the mean and standard deviation of the entire si-
mulated population for each set of simulations to create indices which
fall between O (no local complexity) to 1 (extreme local complexity). In
this way, a smooth circle has a value of 0 for both indices.

2.2. Simulated shapes

While FD has been used capture complexity in a large number of
publications, to our knowledge, there is no extant set of shapes with
precisely known degrees of local complexity against which FD or HPR
may be benchmarked. Accordingly, the only option available is to
generate shapes with induced complexity which systematically varies in
magnitude in a known manner.

Shape simulation and manipulation are summarized in and Fig. 2,
and explained in depth in the supplementary materials. We began with
eleven two-dimensional non-self-intersecting contours denoted by 50
pairs of xy coordinates (3-13 sides, one complex; Fig. 2 panel A). We
then induced three forms of local complexity depicted in Fig. 2 panel B:
random (where each point denoting the contour was moved completely
at random); recursive (inducing recursive triangular fractal-like com-
plexity); and regular (where every second point was contracted),
n = 33.

The degree of local complexity present can be thought of two ele-
ments; the amplitude and the frequency. Amplitude is the distance
points may be offset in random complexity, the number of iterations in
recursive complexity, and the depth of the offset in regular complexity.
Five versions of amplitude, from shallow to deep, were manipulated for
each of the local complexity forms of each of the 11 base shapes, re-
sulting in 165 shapes varying in local complexity amplitude (see Fig. 2
panel C and supplementary Fig. 2). Frequency is the distance between
points in random and regular complexity, and the number of triangles
per edge in recursive complexity. Five versions of frequencies, from
widely spaced to narrowly spaced, were manipulated for each of the
local complexity forms of each of the 11 base shapes, and then matched
on amplitude, resulting in 150 shapes varying in local complexity fre-
quency (see Fig. 2 panel D and supplementary Fig. 3).

Shape is the aspect of form that is invariant across rotation, re-
scaling, and translation'. Rotation is a non-shape property common in
neuroimaging, therefore a successful measure of local complexity
should be insensitive to rotation. All shapes were rotated through 360
degrees. Each of the three forms of local complexity was induced in
each of the 11 base contours (33 contours), resulting in each of the local
complexity forms of each of the 11 base shapes, and then matched on
amplitude, resulting in 11,880 shapes varying in rotation (see Fig. 2
panel E, supplementary figure 4).

There are many circumstances where only a sub-section of a contour
may have local complexity, such as where a lesion or physical injury
impacts on only one end of a given contour (e.g. one end of the corpus
callosum, one corner of the hippocampus). Accordingly, we manipu-
lated percentage of complexity: each contour was spliced with local
complexity of each of the three forms, such that the final contour had
varying percentages of local complexity (0%, 10%, 20%, ...100%;
n = 363; Fig. 2 panel F, supplementary figure 5).

2.3. Real shapes

Real-world biological contours were selected to contrast FD and
HPR performance in terms of scale and complexity; tumor growths are

! Small CG. The statistical theory of shape. Springer Science & Business Media;
2012.
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Fig. 1. Conceptual and applied process of extracting HPR and FD.

This figure summarises how Fractal Dimensionality (FD) and Harmonic Power Requirement (HPR) conceptualise local complexity. Panel A: FD operationalises shape
in terms of boxes on a grid. Here, local complexity is the slope denoting the linear relationship between the size of boxes on the grid, and how many are filled by that
shape. HPR operationalises shape in terms of overlapping harmonics which deform an ellipse, with higher harmonics providing higher frequency detail. Panel B
summarises the logic and formulae. Panel C: The relationship between additional harmonics and improvement of shape operationalisation is non-linear in a way that
is unique to each shape, but there is always a point at which adding more harmonics does not improve the fit of the shape. Here, the measure of local complexity is
the cumulative sum of the harmonics required to reach this point, 99.9% harmonic power.

comparatively larger and smoother, while stroke lesions are compara-
tively smaller and more jagged in shape. Glioma tumour cores were
obtained from The Multimodal Brain Tumour Image Segmentation
Benchmark (BRATS) challenge (Bakas et al., 2017; Menze et al., 2015).
Briefly, this is a collection of 65 multi-contrast MR scans of low- and
high-grade glioma patients, taken at 1.5-3 T across several scanners and
resampled images to 1 mm isotropic resolution in a standardized axial
orientation. For the current study, we focus on the BRATs manual
segmentation of the “gross core” of the tumour; the necrotic, cystic and
enhancing substructure (but not surrounding oedema) undertaken on
T1 scans. Lesions following stroke were obtained from the Anatomical
Tracings of Lesions After Stroke (ATLAS) Dataset - Release 1.1(Liew
et al., 2017). Briefly, this open source data collection consists manual
tracings of post-stroke lesions from 304 T1-weighted 1.5-3 Tesla ana-
tomical MRI images collected from research groups in the ENIGMA
Stroke Recovery Working Group consortium. In the current study, we
converted tumour cores and stroke lesions from participant native space
into two-dimensional contour (xy coordinates) in R, taking the slice
along the anterior-posterior axis with the largest volume (thus max-
imising the size of the contours). This resulted in a final set of 285
tumour and 487 lesion shapes (as some individuals had multiple tu-
mours or strokes). More information regarding this process can be
found in supplementary figure 6.

2.4. Statistical analysis

For simulated shapes, a series of general linear models were fit, with
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each local complexity manipulation (form, amplitude, frequency, ro-
tation, and percentage) as a predictor of HPR or FD. Sensitivity to local
shape properties (amplitude and frequency) will be manifest in a po-
sitive association between the known degree of local shape properties
and the indices. Specificity to local shape will be manifest in the
comparative strength of associations between local shape manipula-
tions and the index, and the associations between global (number of
sides) or non-shape (rotation) manipulations and the index. Specificity
to how much of the contour exhibits local complexity will be manifest
in the association between the percentage of the contour with local
complexity, and the index. For clinical contours (glioma cores and
stroke lesions), the measures were compared in terms of correlation and
range. In order to ascertain whether HPR may provide information
beyond FD (and thus be useful), correlations between HPR and FD were
used to ascertain whether they are measuring the same (high correla-
tion) or different (low correlation) local complexity features.

3. Results
3.1. Simulated shapes

Simulated shape results are summarised in Fig. 2, Table 1, and
supplementary materials. HPR and FD were moderately positively
correlated (r=0.2), and both indices increased with amplitude, fre-
quency, and percentage (Table 1), indicating both indices are sensitive
to local complexity but focus on different features. FD was more sen-
sitive to recursive and random local complexity, while HPR was most
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Fig. 2. Simulated Results.

Panel A: The “shape set” panel demonstrates the selected eleven contours to be manipulated; 3 through 12 corners, and one complex contour. Remaining panels B
through F summarise results over each manipulation. The x-axis denotes the degree of manipulation, shown by example 5-cornered contour (where points denote
values for all eleven contours). These demonstrate the range, as fewer shapes than manipulations have been selected for clarity (e.g. there were 365 rotations, but
only five are shown). The y-axis provides either FD (red) or HPR (blue) index for a given contour (point) and the range across contours (boxes). For all but ‘form’ and
‘rotation’, these summaries include all three forms of local complexity (recursive, random, and regular), thus plots C through F have 33 possible points (hence minor
jittering to avoid overplotting). In panel E, the points denote the standard deviation of FD and HPR indices across 360 degrees of rotation, with one point per form of
complexity. Similar plots deconstructed across these three forms of local complexity can be seen in the supplementary materials.
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Fig. 3. Real Contour and post-hoc analysis results.

Panels A and B depict the simple bivariate association between the Harmonic Power Requirement and Fractal Dimensionality in the real-world datasets. Two-
dimensional contours of post-stroke lesions (for ATLAS) and Glioma gross cores (for BRATS) are provided as visual cues of shapes afforded those corresponding scores
by HPR and FD indices. Panel C displays additional simulation analyses on sets of 10 circles that demonstrate how the presence of invaginations in the BRATS dataset
impacted the association between the two measures. Panel D demonstrates a simple example of the relationship between amount of local complexity present and

HPR/FD values.
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Table 1
Overview of simulation results.
HPR FD
intercept slope intercept slope
Form 0.82 (0.63, 1.01) 0.01 (-0.01, 0.02) 0.22 (0.17, 0.28) 0.01 (0.001, 0.01)
Random 0.13 (-0.02, 0.28) —0.23 (-0.27, -0.19)
Regular —0.03 (-0.18, 0.12) 0.64 (0.60, 0.69)
Amplitude 0.79 (0.73, 0.86) 0.03 (0.01, 0.05) 0.09 (-0.02, 0.19) 0.09 (0.06, 0.12)
Frequency 0.85 (0.79, 0.90) < 0.01 (-0.001, 0.001) 0.004 (0.003, 0.01) 0.004 (0.003, 0.01)
Rotation 0.86 (0.85, 0.87) < 0.01, (< 0.01, < 0.01) 0.49 (0.48, 0.50) < 0.01, (< 0.01, < 0.01)
Percentage 0.65 (0.61, 0.70) 0.002 (0.001, 0.003) 0.13 (0.09, 0.16) 0.01 (0.01, 0.01)

Note. Base group for comparison of form is recursive local complexity. All but the Form models control for form of local complexity (coefficients not shown).
Confidence intervals but not significance are reported, as the magnitude and precision of effects are more meaningful here.

sensitive to regular complexity. Coupled with the observation that FD
increased as more of the contour was locally complex, while HPR re-
mained comparatively stable, this demonstrates that FD is sensitive to
the degree of complexity across the whole contour, while HPR is better
suited for detection of the highest frequency present regardless of
complexity elsewhere on the contour. Both indices increased as am-
plitude and frequency increased, however HPR exhibited a wider range
at each level of these manipulations. This may be because the HPR
captures first global, then local shape information, and so more har-
monic power is tied to capturing the global complexity (divergence
from an ellipse), consequently reducing sensitivity to local complexity.
FD was systematically biased by rotation (periodic relationship between
rotation and index can be seen Fig. 2 panel E), likely due to the or-
ientation of the grid used for box counting algorithms. While HPR ex-
perienced some bias in rotation in some simulated shapes, this was
more random and to a substantially lesser degree.

3.2. Real shapes

Real shape results are summarised in Fig. 3 (panels A and B). The
indices were positively correlated in the ATLAS post-stroke lesion
contours (r=0.6), yet negatively correlated in the BRATS glioma gross
cores (r=-0.4). The most likely explanation for this was that indices
diverge substantially in the presence of invaginations, as this was the
key shape feature present in BRATS but largely absent from the ATLAS
contours. A further contributing element may have been the tendency
for FD to be more sensitive to the amount of complexity present, while
HPR is more sensitive to the degree (regardless of amount).

3.3. Further exploration of key differences between FD and HPR

A further 60 shapes were simulated. As summarised in Fig. 3 panel C
(and supplementary figure 7), these were sets of 10 circles varying in
invagination depth (0=shallow to 10=deep), width (0=narrow to
10=wide) and number (0-9), with either no or some local complexity
present.

As invagination depth varied, results indicated FD measured pri-
marily local complexity while HPR conflated local and global com-
plexity: t-tests comparing index values with/without local complexity
were significant for FD (t = 4.47, 95%, p < 0.01) but not HPR
(t = 1.89, p = 0.12). Correlation between the two was confounded by
two clusters of limited variability in FD (corresponding to no and some
local complexity) but a range of values in HPR (corresponding to var-
iations in global shape). As invagination width increased, HPR re-
mained relatively constant while FD varied substantially. While both
significantly differentiated with/without local complexity (FD t = 4.44,
p < 0.01; HPRt = 16.5,p < 0.01), for the width manipulation there is
limited variability in HPR (corresponding to no and some local com-
plexity) but a range of values in FD (corresponding to variations in
global shape). Both HPR and FD were somewhat sensitive to in-
vagination number, with both increasing as invagination number
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increased. While FD still consistently differentiated with/without local
complexity (t = 4.44, p < 0.01), HPR did not (t=0.08, p=0.93), most
likely because the difference between zero and one invaginations was
detected as a major change in local complexity.

A further point of divergence between the two indices that may
have contributed to the observed results is that HPR detects points of
highest frequency, while FD averages across the whole contour. This
was manifest in results for varying percentage of local complexity, and
is demonstrated in Fig. 2 panel F and Fig. 3 panel D. FD smoothly in-
creases as the complexity elsewhere on the contour increases, while
there comes a point (specific to each form) where HPR reaches ceiling
regardless of additional components of a contour exhibiting local
complexity. Taken together, these results indicate that the divergence
between FD and HPR when applied to real-world cancer lesion data is
likely due to HPR’s relative sensitivity to global shape features (in-
vaginations) and comparative insensitivity to the amount (rather than
degree) of complexity present.

4. Discussion

This study used a combination of simulated and real contours to
clarify the sensitivity, specificity and comparative properties of two
indices for measuring local shape complexity in neuroimaging. We
found that FD and the proposed HPR index were positively correlated,
but diverged in ways that relate to their conceptually distinct oper-
ationalisations of local complexity information.

FD was more sensitive to amplitude, frequency, and less biased by
global shape features such as the depth of invaginations. However, it
was also more vulnerable to bias from rotation, and global shape fea-
tures such as the width of invaginations. These characteristics arise
directly from the use of a grid, where minor shifts in shape orientation
and location may cause parts of a contour to become ‘counted’ or not.
This is overcome in HPR, which was comparatively rotation and or-
ientation invariant. However, because HPR is constructed as deviations
from an ellipse, global shape forms requiring substantial deformation,
such as deep invaginations, require higher frequency harmonics, and so
dull sensitivity to features which more closely align with local com-
plexity such as more generalised surface unevenness. These relative
strengths and weaknesses align with previous suggestions that Fourier
techniques are better suited to elliptical biological forms (Caple et al.,
2017; Kuhl and Giardina, 1982), and calls for caution in orientation and
grid size selection when applying FD (Walsh and Watterson, 1993). Yet,
likely due to the wide range of potential applications of local com-
plexity analysis, there remains an absence of clear guidelines as to
precisely how much deviation from an ellipse is tolerable (short of
mathematical failure to converge), or how much of a threat rotation
poses (short of averaging FD over an arbitrarily large set of orienta-
tions). Accordingly, it may be useful to apply both HPR and FD and use
divergence in the indices to indicate where bias arising from one or the
other may be unduly impacting results.

FD indicated net complexity across the whole contour, because it is
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based on a ratio that encompasses the whole contour. HPR provides a
distinct perspective by providing a measure of the highest frequency
present regardless of complexity elsewhere on the contour, after
somewhat accounting for information tied to global features.
Accordingly, FD may be most suitable in circumstances where overall
complexity is most meaningful (e.g. in differentiating benign from
malignant tumors (Wu et al., 2012)), while HPR is better suited for
circumstances where peak complexity is of most interest (e.g. in in-
vestigating stroke lesions where only part of a neural structure’s con-
tour is impacted, as in (Szabo et al., 2009)).

To our knowledge, this is the first systematic benchmarking of FD
for neuroimaging applications and suggestion of HPR as an alternative,
complimentary metric of local complexity. Accordingly, the scope of
this study was limited to a set of selectively manipulated simulated
shapes, and two sets of existing manually segmented data, all of which
described closed contours. There is substantial scope to apply both FD
and HPR in the investigation of open contours (e.g. (Dalitz et al.,
2013)’s expansion of Fourier descriptors for open shapes via the convex
hull), for applications such as exploring convolution of gyri (e.g. pro-
viding a complementary alternative to (Luders et al., 2004)‘s global
measure of smoothed absolute mean curvature). Similarly, in the in-
terests of generic applicability, analysis was limited to comparison of
FD and HPR. This leaves room for further benchmarking against do-
main-specific measures of shape which relate to local complexity (e.g.
compactness and moment-based shape factors used in differentiating
malignant from benign cancers as in (Wu et al., 2012)) in future studies.
Finally, both FD and HPR are amenable to extension into the third di-
mension via cube-counting algorithms and Spherical Harmonic Ana-
lysis. Given the inherently three-dimensional nature of neuroimaging
scans, further benchmarking of their expansion into 3D space would be
highly informative.

5. Conclusions

The choice of using one (or both) indices depends on whether the
researcher is more interested in measuring the surface complexity of the
most irregular part of a contour(in which case HPR is preferable), or an
aggregate measure that characterises complexity across the entirety of
the contour (in which case FD is preferable). The presence and theo-
retical importance of global features that may or may not be of interest,
such as large invaginations as seen in cancer masses, should also be
considered. These results demonstrate there is considerable scope for
the HPR to be used in future neuroimaging research.
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