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Shape analysis provides a unique insight into biological processes. This paper evaluates the properties, performance, and utility
of elliptical Fourier (eFourier) analysis to operationalise global shape, focussing on the human corpus callosum. 8000 simulated
corpus callosum contours were generated, systematically varying in terms of global shape (midbody arch, splenium size), local
complexity (surface smoothness), and nonshape characteristics (e.g., rotation). 2088 real corpus callosum contours were manually
traced from the PATH study. Performance of eFourier was benchmarked in terms of its capacity to capture and then reconstruct
shape and systematically operationalise that shape via principal components analysis.We also compared the predictive performance
of corpus callosum volume, position in Procrustes-aligned Landmark tangent space, and position in eFourier n-dimensional shape
space in relation to the Symbol DigitModalities Test. Jaccard index for original vs. reconstructed fromeFourier shapeswas excellent
(M=0.98). The combination of eFourier and PCA performed particularly well in reconstructing known n-dimensional shape space
but was disrupted by the inclusion of local shape manipulations. For the case study, volume, eFourier, and landmark measures
were all correlated. Mixed effect model results indicated all methods detected similar features, but eFourier estimates were most
predictive, and of the two shape operationalization techniques had the least error and better model fit. Elliptical Fourier analysis,
particularly in combination with principal component analysis, is a powerful, assumption-free and intuitive method of quantifying
global shape of the corpus callosum and shows great promise for shape analysis in neuroimaging more broadly.

1. Introduction

Structural neuroimaging studies have provided invaluable
insight into the normative development of the human brain
and aetiology of neurodegeneration and disease. A focus on
brain region is gradually being supplemented by recognition
of the importance of also exploring shape characteristics [1].
For example the human corpus callosum, the main bundle
of fibres between the left and right cerebral hemispheres, has
been extensively studied due to its critical role in connecting
distant specialised brain areas, and because of its implica-
tion in retardation and sensory and cognitive deficits when
impaired. The shape of the corpus callosum is biologically
meaningful because it reflects topological distribution of
interhemispheric connectivity [2, 3]. Accordingly, corpus
callosum shape has been shown to have clinical importance

in dysfunction associated with interhemispheric connectivity
(e.g., schizophrenia [4]) and neurodegenerative disease (e.g.,
multiple sclerosis [5, 6]).

Past studies have indirectly captured corpus callosum
shape using area partitioning, where the two-dimensional
contour is divided and the area of each division is com-
pared (e.g., [7, 8]), or the more modern equivalent where
parcellation or regional thickness is used in combination with
the cross-section midline (e.g., [9, 10]). These approaches
have provided useful insights into the importance of corpus
callosum shape, but are limited in accounting for more subtle
but potentially significant global shape characteristics (e.g.,
“fat and arched with bulbous splenium” and “thin and long
with pointed splenium”).

Shape is the aspect of form that is invariant across
rotation, rescaling, and translation [11]. Global shape is the
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overall form, distinct from small local details: global shape
can be thought of as the overall shape of country on a map,
and local shape (sometimes called local complexity) as the
detailed perturbations of the coastline [12]. In neuroimaging,
the process of MRI scan registration and segmentation
largely removes nonshape information (translation, scale,
and orientation). At this point, shape can be captured using
pointwise or deformation techniques, where shapes in each
scan are directly compared with an atlas shape on a point-to-
point or deformation field basis [13]. Alternatively, shape can
be captured by specifying a series of points applied to corre-
sponding locations on a set of scans, known as landmarks [14,
15]. These approaches have been very successful in demon-
strating developmental or pathological differences in the
brain [11, 13]. Particularly in the case of the corpus callosum,
these techniques have revealed differences between normal
controls and those with dyslexia (e.g., [16]), autism (e.g.,
[17]), bipolar disorder (e.g., [18]), foetal alcohol syndrome
(e.g., [19]), and individuals with history ofmethamphetamine
use (e.g., [20]). Although innovations such as automated
semilandmarks have improved traditional entirely manual
landmark assignment approaches [21], the reliance on a
priori decisions about shape (e.g., choice of atlas, choice of
landmark number and position, and semilandmark number)
may lead to undetectable omission of potentially important
shape features from analysis. There is therefore need for
techniques which can operationalise global shape without
such a priori assumptions, for use in subsequent analyses.

Fourier analysis uses overlapping trigonometric func-
tions to capture shape information. Different forms of
Fourier analysis use different trigonometric functions. Radius
(rFourier) focusses on the distance of any point on the outline
to the centroid of the shape, and tangent (tFourier) focuses
on the variation of the tangent angle for any point [22].
These techniques assume particular properties of the shape
representation not typically found in real-world contours
(e.g., equally spaced points around the contour). Their more
modern expansion, elliptical (eFourier) begins with an ellipse
(derived from the whole perimeter and aligned to the first
point of the contour). It considers shape in terms of an
abscissa and a series of �푛 harmonics for each of the x and
y axes [23]. It makes no assumptions about the form of the
coordinates denoting a shape contour and draws from the
whole perimeter (rather than a manually assigned “start”
coefficient) to instantiate its initial ellipse, so it ismore flexible
and useable. Of the Fourier methods, eFourier analysis is well
established as a technique for operationalising shape in the
animal biology and anthropology literatures (e.g., [24, 25]).
Yet, while a number of Fourier methods (primarily tFourier)
have been used as part of broader processes to establish shape
space and conduct shape analyses (e.g., [26, 27]), and there
are historical examples of eFourier and principal components
analysis being used in combination to operationalise shape
[28–30], there are only a few examples of eFourier analysis
being applied in neuroscience shape research [1, 31, 32].

While Fourier shape analysis has undergone rigor-
ous scrutiny (e.g., [33–35]), these investigations can be
opaque to nonmathematicians, and rarely address ques-
tions of pragmatic importance to neuroscience and health

researchers—those relating to sensitivity (how well does this
technique capture shape?), reliability (how consistent is error
across shapes?), and specificity (which nonshape considera-
tions may bias results?), and interpretability (does this output
reflect the shapes seen in the raw data?). Although there
was growing interest and an increasing number of examples
of Fourier shape analysis being applied in neuroimaging
research and clinical outcomes (e.g., [32, 36, 37], publications
using this technique have slowed, and there remains a lack
of field-relevant benchmarking of the method. The aim of
this paper is therefore to establish the properties of Fourier
shape analysis techniques with a specific focus on properties
relevant to neuroimaging and health analyses, using the
corpus callosum for demonstration.

2. Methods

2.1. Shapes. The human corpus callosum exhibits a wide
range of shapes but can be characterised by three sections:
the rounded splenium (or “head”), the midbody, and the
genu (or “tail”). This partitioning is biologically meaningful
as these regions are histologically distinct [38] and have been
linked with different neural regions (e.g., midbody linking
the motor cortices [39]) and pathologies (e.g., schizophrenia
is linked the splenium but not genu [40]). Global shape
is formed by variability in the relative size and angle of
these components, as well as the thickness and arch of the
midbody. In order to establish a measure’s sensitivity to
global shape (driven by variation in these components seen
in real-world corpus callosum shapes), we simulated 8000
corpus callosum-like shapes in R version 3.2.0 running on
a Windows computer [41] using the packages raster, version
2.4.20 [42]; sp, version 1.2.1 [43] (Figures 1 and 2). These
shapes consisted of a circle (pseudo-splenium) with 1/5th
of the perimeter removed for attachment to the midbody,
which consisted of two straight lines twice the diameter of
the original circle in length. The genu consisted of a blunted
outer curve and thinner inner curve dynamically sized to
ensure a closed non-self-intersecting contour when joined
with the midbody lines. As scale is not included in shape
information, all manipulations were undertaken relative to
this starting position. As shown in Figure 2, eight sets of 1000
shapes were manipulated to systematically vary on (a) global
shape characteristics: (1) midbody curve (induced by raising
the centre of the initial midbody lines then extrapolating
smooth curves while retraining connections to splenium and
genu, varying from initial start point to 50% of total midbody
length), (2) splenium scale (from -80% to +80% of initial
starting size), (3) midbody length (from start point described
above to 10 x longer relative to splenium circle size), and (4)
a combination of these characteristics; (b) local complexity
(regular puckering across the contour built from a curve
of a sine wave at varying amplitudes); and (c) nonshape
characteristics: (1) distribution of points along the outline
(induced by resampling x y coordinates along the contour),
(2) scale (linear transformation), and (3) rotation (from shape
centroid).

Real corpus callosum shapes were drawn from the
Personality and Total Health (PATH) Through Life study
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Figure 1: Overview of shape sources and methodology. Note. The figure depicts a visual summary of the analysis method undertaken in
this study. Panel (a) depicts the source of shapes being studied: either simulated corpus callosum like contours (upper) or manual tracing
from MRI data (lower). Panel (b) shows the outlines as denoted by x and y coordinates in two-dimensional space. Panel (c) shows how the
outlines are operationalised by a series of elliptical Fourier harmonics, shown numerically (upper) and spatially (lower). Panel (d) depicts
the original shape (upper), the same shape deconstructed and then recovered from elliptical Fourier harmonics (middle), and the measure
of shape recovery (the overlap of these two shapes, the Jaccard index, lower). Panel (e) shows an array which demonstrates the systematic
manipulation of simulated shapes on three axes, and panel (f) shows the relative position of those shapes in principal component space. Panel
(g) depicts the information obtained from the principal components analysis undertaken in panel (f).

[44]. The current study focusses on 926 participants in the
cohorts aged 40-45 and 60-65 years at baseline, followed
up over twelve years with between one and three scans per
participant. As described in Shaw, Sachdev [45], T1-weighted
MRI scans were acquired in sagittal orientation (1mm slices,
repetition time 1160ms, echo time 4.24ms, flip angle 150,
and matrix size 512x512) and processed in FreeSurfer v5.3,
with each voxel sized to 1.0mm3. Estimated intracranial vol-
ume was derived from a transformation between voxelwise
intracranial volume and Talairach space transform [46]. A
total of 2088 corpus callosum tracings were available for
this analysis. Contours were manually traced from the two-
dimensional slice through the mid-sagittal slice of scans.
A subset of these tracings (selection process described and
further detail below) were used in later exploration of applied
utility of the eFourier technique. Approval for the study was
obtained from the human research ethics committee of the
Australian National University and all participants provided
written informed consent.

2.2. Global Shape and Shape Space Extraction. As outlined
in Figure 1, all simulated and real corpus callosum shapes
were denoted by points in two-dimensional Cartesian coordi-
nates describing non-self-intersecting contours, which were
imported into R and resampled to 200 points per contour
(for consistency). All eFourier analyses were undertaken in
Momocs, version 0.9.48 [47], with 50 harmonics specified.

Though eFourier could theoretically perfectly reproduce a
shape with a sufficiently high number of harmonics, the
number of harmonics is limited by the number of initial
points (two or more points required for each harmonic).
Computational expense was historically a limitation, but
very large numbers of harmonics are tractable with modern
computing power. In practice 12-20 harmonics are typically
used for morphometric analyses, hence the choice of 50
here has been selected to balance common practise with
achieving high shape recovery fidelity. Shape recovery (via
inverse eFourier Transform) and shape space construction
(via Principal Components Analysis, PCA) were also under-
taken in Momocs.

2.3. Benchmarking Metrics. Fidelity of shape recovery was
investigated by comparing original shape against shape
reconstructed by eFourier harmonics, via the Jaccard index
[48] (illustrated in Figure 2, panels (a) and (b)). If �푂 is the
original shape and �푅 is the reconstructed shape, then the
Jaccard index superimposes �푂 and �푅 in space and describes
their intersection relative to the union of the two shapes. In
R, original and reconstructed shapes were rasterized into a
200x200 matrix, a resolution chosen to balance computa-
tional expense against sensitivity (these dimensions provide
high resolution of 40000 points of possible overlap). An
intersection matrix, I, was calculated such that �퐼 = �푂 ∩
�푅; then Jaccard = �퐼area/(�푂area + �푅area − �퐼area). The index
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Figure 2: Shape manipulations, shape recovery, and shape space recovery. Note. Panel (a) shows shape manipulations of simulated shapes.
These simulations induce variation based on biologically distinguishable regions (genu, splenium, and midbody), with some exaggeration
of properties most common in the literature (volume, thickness, and curve). Panel (b) shows manipulations of nonshape properties: the
distribution of points denoting the contour, the scale, rotation, and degree of local (rather than global) shape complexity. Panel (c) depicts
Jaccard index comparing original and reconstructed shape across manipulations, with expanded view to the left due to strong ceiling effects.
Panels (d), (e), and (f) depict the results of the principal components analysis undertaken. Panel (d) shows results when analysis includes
only global shape manipulations. The background image shows hypothetical possible variation in corpus callosum shape across the first
two principle components. The data points indicate where each shape is positioned within this space. The colour and label reflects which
manipulation was undertaken: midbody curve (MC) in red; splenium size (SS) in green; midbody length (ML) in purple, and an admixture
of thesemanipulationsmultiple features (MF) in black. Panel (e) shows resultswhen global shape (MC, SS,ML,MF) andnonshape parameters
of randomized points (RP in dark green), scale (S in teal), and rotation (R in orange) manipulations are included. Panel (f) shows results when
global shape (MC, SS, ML, MF), nonshape (RP, S, R), and local complexity (LC) manipulations are included in analysis.

is between 0 and 1, with values approaching 1 indicating
greater similarity, and values approaching 0 indicating greater
discrepancy between �푂 and �푅. A value of 0.8 or higher
(indicating 80% overlap) is typically regarded as good to
excellent in neuroimaging studies of this kind. The Dice
index was also calculated but is not reported because results
were very similar between Jaccard and Dice indices. Logistic
regression and Nagelkirke Pseudo-R2 were used to explore
the impact of different shape manipulations on the Jaccard
index.

Principal Component Analysis (PCA) constructs a low
dimensional view of a higher dimensional space. Broadly, the
intention is to explain the greatest portion of variability in
a large set of elements (such as items in a questionnaire or

biochemical assay [49], spatiotemporal EEG signals [50], or
facial features [51]) using the minimum set of dimensions,
so that a complex set of measures can be summarised
parsimoniously for characterisation and subsequent mod-
elling. Here, we apply PCA to construct a lower dimensional
view of a “shape space” (mirroring the terminology “face
space” typically used in the application of PCA in the facial
feature literature [51]). In the case of the simulated shapes,
the dimensions of this shape space are determined by the
aspects of shape wemanipulate, and the position within those
dimensions corresponds to the degree of manipulation. We
term “shape space recovery” to refer to the degree to which
the lower dimensional view of shape space produced by PCA
reflects the known properties of this shape space.
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Fidelity of shape space recovery was investigated by com-
paring the known shape space properties (introduced at the
point of simulation) with reconstructed shape space ascer-
tained via Principal Component Analysis (PCA) outputs.The
degree to which the reconstructed shape space resembles
the known shape space gives insight into the success of the
operationalisation technique. As summarised in Figure 1,
the two considerations are whether PCA detects the known
number of components (shape space dimensionality), and
howwell it detects each shape’s position on these components
(sensitivity to shape properties within shape space). Three
PCA were undertaken on different subsets of the simulated
shapes: first including those shapes with only global shape
features (to explore sensitivity; manipulations of midbody
curve, splenium size, midbody length), second with the
addition of shapes which had nonshape features manipulated
(to explore bias from nonshape cues; manipulations of the
points denoting the contour, scale, and rotation), and finally
with the addition of simulated shapes with local shape
manipulations (to explore bias from local rather than global
shape).

2.4. A Case Study: eFourier in Practice. Fidelity in recovering
shape and shape space are important only inasmuch as
they impact the sensitivity of shape operationalisation in
application. We therefore present a case study of applying
eFourier and PCA in combination to explore the association
between corpus callosum shape and lexical fluency in a
large, community-living sample of older adults. The Symbol
Digit Modalities Test (SDMT) was chosen as an example
due to its sensitivity to several of the major correlates of
corpus callosum health (executive function, visual search,
attention, and processing speed) and use in clinical evaluation
of disorders impacting the corpus callosum such as multiple
sclerosis [5, 6]. Drawing from the PATH study, we excluded
all individuals with neurological pathology during the course
of the study (dementia, epilepsy, and stroke), resulting in a
sample size of 868 participants (aged 40-65 years at baseline,
45% female, 11% left-handed). As well as demographic (age,
gender, years of education, handedness side, and degree) and
MRI data, these participants completed a series of cognitive
tests, including the SDMT [52]. Briefly, participants were
presented with key assigning abstract symbols to numbers
1 through 9 and are required to match the symbols to their
paired digits in a worksheet below. They were given 90
seconds to match as many word/symbol pairs as possible
from a total set of 110. The final score was the total number
of correct symbol/digit pairs.

Following the historical development of shape analysis
in neuroimaging, we compared the performance of two-
dimensional corpus callosum volume (calculated from the
area of the traces), position in Procrustes-aligned Landmark
tangent space (LPC), and position in shape space from PCA
following eFourier operationalisation (EPC). Briefly, LPC
involves manually assigning “landmarks,” discrete anatomi-
cal points that are homologous across shapes, and sometimes
(as in the current study) supplemented by “semilandmarks,”
points whose positioned arbitrarily along a line which
describe a curve. As with eFourier, a sufficiently high number

of landmarks and semilandmarks would perfectly represent
shape, but practical aspects such as computational expense
and researcher time result in sometimes very few (5-10) land-
marks being used with some forms. Procrustes alignment
uses scaling, rotation, and translation to remove nonshape
information denoted by these landmarks. These aligned
shapes are projected into tangent space, an n-dimensional
abstract space much like the n-dimensional abstract space
invoked in PCA. We compare the performance of LPC and
EPC in mixed effects (hierarchical) linear model framework,
with repeated measures nested within individuals (random
intercepts allowed). Total intracranial and corpus callosum
volumes were obtained directly from Freesurfer output and
divided by 1000 (converted to mm3). Much as in [14] and
shown in Figure 3, 10 fixed landmarks were assigned at
the rostrum while 35 sliding “semilandmarks” denoted the
remaining contour, using the geomorph package, v 3.0.1 [53].
The purpose of this analysis is to compare the two methods,
so rather than focussing on the meaning of results, so for the
purposes of comparison no rotationswill be applied, and only
the first shape space component for each of eFourier/PCA
and Landmark/Tangent space will be presented (denoted
EPC1 and LPC1). Variance explained by each component for
each method will also be presented for context. All measures
were converted into z scores for the purposes of comparison.
Sensitivity analyses were carried out using three-dimensional
corpus callosum volume (from automated Freesurfer voxel
counting), and with unstandardized versions of volume,
EPC1 and LPC1.

3. Results

3.1. ShapeRecovery. AsFigure 2 (panel (c)) shows, the Jaccard
index for original vs. reconstructed shapes was reliably excel-
lent and highly stable across all shapes (M=0.98, SD=0.03).
Logistic regression with global shape manipulations as a
comparison group indicated that local shape manipulations
were associated with slightly lower (b=-0.09, SE<0.01) Jaccard
index, while nonshape manipulations were associated with
a slightly higher (b<0.01, SE<0.01) Jaccard index. The global
shape manipulation with the lowest Jaccard index and most
variability was splenium size, though the correspondence
between original and reconstructed shape remained excellent
(M=0.90, SD=0.06). Nagelkirke Pseudo-R2 indicated that
nonshape manipulations (scale, orientation, and randomness
of points along the contour) explained more variance in
the Jaccard index than shape manipulations (68% vs. 33%),
though this has limited meaning due to the consistently
limited variability in the Jaccard index (due to near ceiling
performance).

3.2. Shape Space Recovery. PCA on eFourier operational-
isations of shape resulted in a highly consistent, intuitive
representation of shape space that map onto the known
manipulated properties. Strong sensitivity to shape properties
within shape space can be clearly seen in Figure 2 (panels
(d), (e), and (f)) and is reflected in the correlations between
the degree of manipulation (1000 steps between none and
most extreme) and position on each component, particularly
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callosum shape (large black points) and individual shapes (reduced opacity to show overplotting). Manual landmark assignment reflected the
fact that the sliding scheme applied more landmarks to the genu (lower right), likely reflecting heightened detail in this area when compared
with the midbody. Due to a combination of visual clarity and computational expense in overplotting, a random subset (650 of a total 2088)
are shown. Panel (b) shows reconstructions of shapes positioned at -1 and +1 standard deviations on the first components in landmark and
eFourier-based shape space demonstrates the similarity of this component.The positions of contours in the first two dimensions of these shape
spaces are presented to the right. Panels (c) and (d) show the positions of shapes on the first two components of Landmark (c) and eFourier
(d) PCA results, with greyed out axis numbers indicating scale (absolute position in tangent space for landmark, z score for eFourier). The
scale of PC1 and PC2 is consistent within figures. Note: the first two components depicted explain 43.9% (Landmarks) and 62.1% (eFourier)
of variability in global shape space—if these results were to be interpreted for theoretical outcomes rather than illustrative methodological
comparison, additional dimensions would be required, and the results would likely be highly sample-specific.

when only global shape characteristics were included in the
PCA: �푟Mid body curve/PC1 = 0.90, �푟Splenium size/PC2 = 0.99, and
�푟Mid body length/PC4 = 84. PC3 captured hybrid characteristics
of midbody curve (r=0.89) and splenium size (r=0.92). Turn-
ing to shape space recovery, cumulative variance explained
for the first and fifth components shows how the inclusion of
nonshape and then local shape shifted the explanatory power
of some individual components but did not disrupt variability
in shape explained by the overall shape space; PC1 79.1% vs.
75.1% vs. 60.8%; PC5 98.4% vs. 98.3% vs. 98.0%.This pattern
indicates that the combination of eFourier and PCAperforms
excellently at recovering a known n-dimensional shape space,
though the impact of the local shape manipulation indicates
that while this space is specific to shape, it encapsulates both
global and local shape information.

3.3. Case Study Outcomes. PCA from both eFourier and
landmarkmethods resulted in a first component (PC1) which
varied primarily in midbody thickness and arch (high arch
+ thin through low arch + thick, as in Figure 3 panel (b)).
Cumulatively eFourier explainedmore variance in shape than
Landmarks. For both methods, variability explained by each
component indicated that substantive interpretation would

require multiple components: for eFourier: PC1 explained
45.6% of the variance in shape, PC2 an additional 16.5%,
PC3 an additional 11.5%, PC4 an additional 6.1%, and PC5
an additional 4.9%. For landmarks, PC1 explained 26.3% of
variance in shape, PC2 an additional 17.6%, PC3 an additional
11.7, PC4 an additional 8.3%, and PC5 an additional 7.1%.
This indicates that the first component of the landmarks was
somewhat poorly defined.

The median SDMT score was 54 (range 13-89, SD=10.91).
Mixed effects pseudo-R2 (MuMIn package v1.42.1 [54])
indicated that CC volume explained 17% of variability in
SDMT, while EPC1 explained just 2% and LPC1 1%. Models
including the first ten PCA components (trading parsimony
for greater reflection of the multidimensional shape space)
indicated eFourier components 1-10 together explained 10%
of variability, while Landmark components 1-10 together
explained only 2%. The superior performance of analyses
drawing on more of the shape space should be noted, but for
the purposes of clarity of comparison with CC volume, only
EPC1 and LPC1 will be the focus.

Corpus callosum volume was more closely associated
with EPC1 (r=0.24) rather than LPC1 (r=0.07). EPC1 and
LPC1 were similar in both shape space and first component,
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which denoted a trend from a tall and arched shape to
a flat stocky shape (Figure 3). Position on the first com-
ponent within these spaces was strongly positively (but
not perfectly) correlated, r=0.89. This is reflected in sim-
ilar, but slightly higher Jaccard index for original con-
tours vs. eFourier reconstructions than that of polygons
denoted by the landmarks (M=0.95, SD=0.02). Mixed effects
model results in Table 1 show that CC volume, LPC1, and
EPC1 were all significantly positively associated with SDMT
score (though LPC1 and EPC1 significance did not survive
once covariates—intracranial volume, handedness side, and
degree, gender, age, and years of education—were added).
The strength of this association (model slope) was lowest for
LPC1 and highest in volume.

Mixed effects model fit was best for EPC1 (AIC=
13,530.38), followed by volume (AIC= 13,574.53), and worst
for landmarks (AIC= 13,587.35). Together, these results
indicate all three methods (volume, LPC, and EPC) were
detecting similar features (the thin-to-stockier component
detected by both LPC and EPC logically corresponds to low-
to-higher volume) and that EPC outperformed LPC in terms
of coefficient magnitude and overall model fit.

4. Discussion

This investigation benchmarked the properties of eFourier
shape analysis techniques, focussing on performance and
usability relevant to neuroimaging and health analyses, using
the corpus callosum for demonstration. Elliptical Fourier
demonstrated excellent capacity to capture and reconstruct
shape with minimal error, and similarly captured and recon-
structed a known n-dimensional shape space in combination
with principal components analysis. Further, the case study
demonstrates that the combination of eFourier and Principal
Components Analysis can produce equally clinically useful
outcomes that may be more precise than those from land-
mark methods.

Previous combinations of eFourier and principal com-
ponents analysis (PCA) were innovative but stopped short
of leveraging the full potential of this combination of tech-
niques. Ferrario et al. (1994) [55] conducted eFourier and
PCA on corpus callosum curves but then reduced the rich
information provided by position on multiple component
to a single Cartesian distance from the median shape for
subsequent analysis, in the interests of parsimony. Our results
demonstrate that the n-dimensional shape space resulting
from eFourier and PCA directly, intuitively maps onto a
series of global shape characteristics which may each have
concurrent but distinct biological meaning. We therefore
argue one or more component loadings should be retained as
indicators of global shape which directly correspond to actual
viewable shapes.

Point-to-point, deformation, and landmark methods
have proven useful [11, 13], but have been criticised for
their need for a priori choices such as landmark placement
schemes which may omit unknown but important aspect of
shape. In the current case study, we assigned substantially
more landmarks than are typically used (e.g., 15 in [56]).
This was made pragmatically feasible due to advances in

the usability and flexibility of semilandmarks [53]. Building
on previous highly mathematically rigorous explorations
of shape space constructed from landmarks [15, 56], our
results demonstrated that with sufficiently high resolution, a
landmark-based approach could provide high fidelity recon-
struction of shape lead to a very similar shape space to
that found by a combination of eFourier and PCA and
consequently operationalises shape in a way that leads to
very similar conclusions in downstream analyses. However,
the complete automation of eFourier remains a substantial
advantage over the substantially labour-intensive process of
assigning the number of landmarks required for comparable,
or in the current case slightly inferior, performance.

This paper has some limitations and leaves several
avenues for further investigation. This paper was the first
to use simulation to establish a shape space with known
properties for the human corpus callosum. The choice of
characteristics to vary was therefore necessarily arbitrary,
leaving substantial scope formanipulation of further features.
Similarly, analyses were limited to the corpus callosum due to
the clear link between shape and function and easily iden-
tified contour. Similar benchmarking for other brain areas
such as ventricles and hippocampus, or for pathologies such
as cancer masses and stroke lesions, where shape is known to
be important may prove fruitful. Real-world interpretation of
the case study was limited by the focus of position on the first
component rather than the whole shape space: while visual
scatter plots and variance explained in both shape and SDMT
indicated substantive rationale for attending to the shape
space more broadly, the methodological focus of this paper
required a simpler construction of using the first component
only. Finally, although a focus on two dimensions is informa-
tive, there are potentially important shapes in neuroimaging
that can only truly be captured in three dimensions (e.g.,
gyri). A clear future step is to expand the current approach to
Spherical Harmonic Analysis (SPHARM),where overlapping
trigonometric harmonics deform a sphere in three dimen-
sions rather than eFourier’s deformation of ellipses in two
[57], particularly given recent strides in SPHARM usability
made in clinical medicine [58, 59].

4.1. Conclusions. Elliptical Fourier analysis, particularly in
combination with principal component analysis, is a pow-
erful, assumption-free, and intuitive method of quantifying
global shape in neuroimaging data. Its weakness is that it
is not a pure measure of global shape, as it is also sensitive
to local shape information. Its strength is that it exhibits
comparable if not greater sensitivity to shape at each stage of
analysis than an equivalent landmark-based approach.

Data Availability

The underlying data for this submission (chiefly the
PATH project data) cannot be made publicly available
due to ethical and privacy concerns. However, interested
researchers are welcome to apply for PATH data access
following the procedures outlined on the project’s website:
https://rsph.anu.edu.au/research/projects/personality-total-
health-path-through-life.

https://rsph.anu.edu.au/research/projects/personality-total-health-path-through-life
https://rsph.anu.edu.au/research/projects/personality-total-health-path-through-life
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Table 1: Case study mixed effects model results.

Sole predictor
Volume LPC1 EPC1
2.41∗ ∗ ∗ 1.70∗ ∗ ∗ 3.05∗ ∗ ∗
(1.88, 2.95) (1.28, 2.12) (2.51, 3.58)

Intercept 53.61∗ ∗ ∗ 53.61∗ ∗ ∗ 53.62∗ ∗ ∗
(52.91, 54.30) (52.89, 54.32) (52.92, 54.32)

Random effects
Intercept 99.9 (9.99) 106.4 (10.31) 102.57 (10.13)
Residual 17.86 (4.23) 17.3 (4.16) 16.91 (4.11)

Observations 1,984 1,984 1,984
AIC 13,574.53 13,587.35 13,530.38

With covariates
Volume LPC1 EPC1
0.82∗ 0.22 0.55

(0.07, 1.57) (-0.43, 0.86) (-0.30, 1.40)
Covariates

Intracranial volume† 1.00∗ 0.93 1.03∗
(0.03, 1.98) (-0.06, 1.92) (0.03, 2.03)

Handedness (right) 0.95 1.04 1.04
(-1.64, 3.55) (-1.57, 3.64) (-1.56, 3.64)

Handedness degree -2.19 -2.30 -2.31
(-4.59, 0.21) (-4.75, 0.15) (-4.72, 0.09)

Gender (Female) 2.31∗ 2.40∗ 2.52∗
(0.36, 4.27) (0.43, 4.37) (0.54, 4.50)

Age‡ 0.65 0.57 0.46
(-1.66, 2.97) (-1.87, 3.00) (-1.85, 2.77)

Years of education 0.44∗ 0.44∗ 0.45∗
(0.09, 0.78) (0.09, 0.79) (0.10, 0.79)

Intercept 51.14∗ ∗ ∗ 51.66∗ ∗ ∗ 51.66∗ ∗ ∗
(40.99, 61.29) (40.96, 62.37) (40.96, 62.37)

Random effects
Intercept 7.40 7.43 7.43
Residual 3.78 3.79 3.78

Observations 675 675 675
AIC 4,510.75 4,515.24 4,513.51
Note. All predictors have been converted into z scores to allow clear comparison across measures. Volume = total two-dimensional volume of the corpus
callosummid-sagittal slice. LPC1 = position on the first component in tangent shape space derived from Procrustes aligned landmarks. EPC1 = position on the
first component in n-dimensional shape space derived from a combination of eFourier and principal components analysis techniques. For fixed effects, values
in brackets are 99% confidence intervals. For random effects, values reported are variance and values in brackets are standard deviations. ∗ p<0.05, ∗∗p<0.01,
∗ ∗ ∗p<0.001. †Intracranial volume was converted to a z score to address model identifiability problems. ‡Age is scaled to years beyond 40 (youngest age in
the cohort). Observations are lower for volume analyses due to some failures in Freesurfer processing. Similarly, the sample size is lower when covariates are
included due to missingness in those variables.
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of assigning a number to a neural shape, the example being
the human corpus callosum. It then outlines our bench-
marking of a combination of elliptical Fourier and principal
components analysis for the purposes of extracting valid,
parsimonious shape information for use in further analyses.
(Supplementary Materials)
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