Academic Decision Making for Statistical Analyses

Erin Walsh and Jay Brinker Research school of psychology, Australian National University Contact – erin.walsh@anu.edu.au

Australian National University

Overview

- An example
- Sample characteristics
- Factors influencing the way researcher use statistics
- The importance of guiding researchers when they are young

An example

The problem: need a method to look at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

An example

The problem: need a method to look at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

Ask your supervisor

An example

The problem: need a method to look at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

```
Ask your supervisor
```

The problem with decision trees

Why not just use a decision tree?

Figure 9. Choosing an appropriate statistical procedure

The problem with decision trees

Why not just use several in concert?

Mock, T. J. (1972). A Decision Tree Approach to the Methodological Decision Process. Analysis, 47(4), 826–829. Retrieved from http://www.jstor.org/stable/245

Hopkins, W. G. & Batterham, A. M. (2005). A Decision Tree for Controlled Trials. Health (San Francisco), 9, 33 –39. Retrieved from http://sportsci.org/jour/05/wghamb.htm

Grosofsky, A. (2008). Statistics Decision Aids

Haslam, S. A. & McGarty, C. (2003). Research Methods and Statistics in Psychology. London: Sage

Tabachnick, B. G. & Fidell, L. S. (2007). Using Multivariate Statistics (Fifth). USA

Matsumo, D. & Van de Vijver, F. J. R. (2010). Cross-Cultural Research Methods in Psychology. Cambridge University Press. Retrieved from http://books.google.com.au/books/about/Cross_Cultural_Research_Methods_in_Psych.html?id=6VpQNIc 9pUAC

Howell, D. (2008). Fundamental Statistics for the behavioral sciences (6th). Belmont, CA: Wadsworth

Corston, R. & Coleman, A. (2000). A Crash Course in SPSS for Windows. Oxford: Blackwell

- MicroOsiris Decision Tree For Statistics (http://www.microsiris.com/Statistical%20Decision%20Tree/)

- Selecting Statistics (http://www.socialresearchmethods.net/selstat/ssstart.htm)

Robinson's A and Intractass Correlation Coefficient

Krippendorffe coefficient of coefficient of

No. Biserial R

One interval One interval One ordinal One ordinal One ordinal One nominal One

Independe samples t-test,

Paired samples t test, Wilcoxon

Both nominal

Yes bit there more than one of the second se

Do you wan relationship variables as Y Yes Y

The quest continues

The problem: need a method to look at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

The problem with going off the literature

- Underreporting of analyses used (Clark-carter, 1997)

- Lack of theoretical understanding of statistics in those who wrote the papers (Macdonald, 1997)

- Leads to a focus only on the conclusion of the decision making process (Corbett, 1995)

The problem with going off the literature

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

Decision trees are too narrow in scope

Check the literature for similar research

The problem with going off the literature

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

statetable.msm(done, participant, data = bob) Decision trees are too to from 1 2 1 45 7 narrow in scope 2 5 35 qmat < -rbind(c(1, 1), c(1, 1))bobcov.msm <- msm(done ~ Occasion, subject =</pre> participant, data = bob, gmatrix = gmat, exacttimes=TRUE, covariates = ~born) > bob.msm Call: msm(formula = done ~ Occasion, subject = participant, data = bob, qmatrix = qmat, covariates = ~born, exacttimes = TRUE) Check the literature for Maximum likelihood estimates: Transition intensity matrix with covariates set to their means similar research State 1 State 2 State 1 -0.1365 (-0.4238,-0.04397) 0.1365 (0.04397,0.4238) State 2 0.01252 (2.792e-22,5.617e+17) -0.01252 (-5.617e+17,-2.792e-22) Log-linear effects of born State 1 State 2 State 1 0 -0.07277 (-0.1281,-0.01741)State 2 0.259 (-3.313,3.831) 0 -2 * log-likelihood: 25.90692 > hazard.msm(bobcov.msm) Śborn HR L TT State 1 - State 2 0.9298107 0.87972999 0.9827423 State 2 - State 1 1.2956336 0.03641881 46.0933900

The quest continues

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

```
statetable.msm(done, participant, data = bob)
from 1 2
  1 45 7
  2 5 35
qmat < -rbind(c(1, 1), c(1, 1))
bobcov.msm <- msm(done ~ Occasion, subject =</pre>
participant, data = bob, qmatrix = qmat,
exacttimes=TRUE, covariates = ~born)
msm(formula = done ~ Occasion, subject =
participant, data = bob, qmatrix = qmat,
covariates = ~born, exacttimes = TRUE)
Transition intensity matrix with covariates set to
        State 1
State 1 -0.1365 (-0.4238,-0.04397)
(0.04397, 0.4238)
State 2 0.01252 (2.792e-22,5.617e+17) -0.01252 (-
5.617e+17, -2.792e-22)
Log-linear effects of born
       State 1
State 1 0
                            -0.07277 (-0.1281,-
State 2 0.259 (-3.313,3.831) 0
-2 * log-likelihood: 25.90692
                                   L
State 1 - State 2 0.9298107 0.87972999 0.9827423
State 2 - State 1 1,2956336 0.03641881 46,0933900
```


The benefit of experience

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

```
statetable.msm(done, participant, data = bob)
from 1 2
  1 45 7
qmat < -rbind(c(1, 1), c(1, 1))
bobcov.msm <- msm(done ~ Occasion, subject =</pre>
participant, data = bob, qmatrix = qmat,
exacttimes=TRUE, covariates = ~born)
msm(formula = done ~ Occasion, subject =
participant, data = bob,
                             qmatrix = qmat,
covariates = ~born, exacttimes = TRUE)
Transition intensity matrix with covariates set to
State 1 -0.1365 (-0.4238,-0.04397)
(0.04397, 0.4238)
State 2 0.01252 (2.792e-22,5.617e+17) -0.01252 (-
5.617e+17, -2.792e-22)
Log-linear effects of born
        State 1
State 1 0
                             -0.07277 (-0.1281,-
State 2 0.259 (-3.313,3.831) 0
-2 * log-likelihood: 25.90692
                                     L
State 1 - State 2 0.9298107 0.87972999 0.9827423
State 2 - State 1 1,2956336 0.03641881 46,0933900
```

mixed logistic autoregression model

```
> pacf(resp)
```

> mod1 <- glmer(resp ~ lag1 + (1|id), family = binomial)
Series resp</pre>

> summary(mod1)
Generalized linear mixed model fit by
the Laplace approximation
Formula: resp ~ lag1 + (1 | id)
 AIC BIC logLik deviance
74.16 81.83 -34.08 68.16
Random effects:
 Groups Name Variance Std.Dev.
 id (Intercept) 3.4846 1.8667
Number of obs: 95, groups: id, 4

Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.9891 1.0960 -0.902 0.36681 lag1 2.6427 0.6833 3.868 0.00011 ***

Correlation of Fixed Effects:

(Intr) lag1 -0.361

3

15

1.60

ACF

adat

But what if there is no Smithson?

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

But what if there is no Smithson?

The problem: need a method to analyse a first-order Markov process, looking at the association between the presence or absence of response at any given point in time with the immediately following, or subsequent responses.

The beautiful combination

480 had psychology departments or schools

480 had psychology departments or schools

70 academics started the questionnaire

480 had psychology departments or schools

70 academics started the questionnaire

34 finished

Sample demographics

Statistical experience of the current sample

Most used

Multilevel regression	1	3%
Sequential / Hierarchical regression	1	3%
MANOVA	1	3%
Psychophysical curves	1	3%
Structural equations modelling	2	5%
Descriptive statistics such as mean, mode, and median	2	5%
Other	4	10 %
Qualitative analysis	5	13%
ANOVA	7	18 %
Linear regression	7	18%
Repeated measures ANOVA	8	21%

"Other" includes non-parametic tests, t-tests, dynamic causal modelling, cluster analysis

Statistical experience of the current sample

Most used

Multilevel regression	1	3%
Sequential / Hierarchical regression	1	3%
MANOVA	1	3%
Psychophysical curves	1	3%
Structural equations modelling	2	5%
Descriptive statistics such as mean, mode, and median	2	5%
Other	4	10 %
Qualitative analysis	5	13%
ANOVA	7	18 %
Linear regression	7	18%
Repeated measures ANOVA	8	21%

"Other" includes non-parametic tests, t-tests, dynamic causal modelling, cluster analysis

Why choose to use repeated measures ANOVA? Textbooks tell us...

All points relate to the data itself.

Choose ANOVA when:

- When you have interval or ratio data
- When you have 1 IV
- When your analysis is not between subjects

Why choose to use repeated measures ANOVA? Textbooks tell us...

All points relate to the data itself.

Choose ANOVA when:

- When you have interval or ratio data
- When you have 1 IV
- When your analysis is not between subjects

Active researchers tell us...

More information about the broader utility of the technique.

"Useful to test for group/time interaction" - BA, Canada, 3 years research experience

"I use this method because the field prefers it and it is appropriate for event related potential data."

- PhD USA, 12 years research experience

"ANOVA's are usually appropriate for experiments. Most of my experiments involve at least one factor that requires repeated measures. These factors are useful because they often reduce variance."

- PhD USA, 40 years research experience

Above and beyond the decision tree...

Benefits of repeated measures ANOVA, from the researcher's personal experience

"Easy to carry out" -PhD, Australia, 14 years research experience

"It is generally appropriate to use it and it is accepted by the field. It isn't as good as MANOVA in some ways but MANOVAs are not as accepted by the field."

- PhD, USA, 12 years research experience

Problems with repeated measures ANOVA, from the researcher's personal experience

"Difficulty conducting simple main effects analyses. Difficulty calculating appropriate error bars, especially when there is violation of sphericity" - PhD, UK, 12 years research experience

"Assumptions are sometimes violated but the technique still used." -PhD, Australia, unspecified years research experience

"Error term calculation and test of means can be finicky." - PhD, USA, 20 years research experience

Now, we begin to get a full picture of repeated measures ANOVA

Statistical experience of the current sample

Variety

Probit and Logit models	3	8%
Time series analysis	7	18%
Other	7	18%
Path analysis	10	26%
Psychometric functions	12	32%
Logistic regression	13	34%
MANCOVA	13	34%
Qualitative analysis	13	34%
Structural equations modelling	14	37%
Multilevel regression	16	42%
Principal component analysis	17	45%
Sequential / Hierarchical regression	19	50%
MANOVA	20	53%
Factor analysis	21	55%
ANCOVA	24	63%
Frequencies	32	84%
Linear regression	32	84%
Percentages	33	87%
Repeated measures ANOVA	34	89%
ANOVA	35	92%
Descriptive statistics such as mean, mode, and median	37	97%

"Other" includes non-parametic tests, t-tests, dynamic causal modelling, cluster analysis

Statistical experience of the current sample

What drives this experience?

- Types of research
- Research designs
- Number of years spent doing psychological research
- Field of research
- Opportunities to expand statistical knowledge

Variety

Twin study	0	0%
Computational modeling	5	9%
Other	9	16 %
Meta-analysis	10	17%
Archival research	11	19%
Case study	12	21%
Field experiment	13	22%
Content analysis	14	24%
Observation	15	26%
Neuroimaging and other psychophysiological methods	16	28%
Random sample survey	18	31%
Interview (structured or unstructured)	28	48%
Self-report inventory	29	50%
Quasi experiment	33	57%
Controlled experiment	44	76%

"Other" includes neuropsychological tests, knowledge extraction from experts, experience sampling

The association between variety of types of research experience, and variety in types of analysis used

Most used

Archival research		0	0%
Twin study		0	0%
Content analysis		0	0%
Meta-analysis	1	1	1%
Case study		1	1%
Computational modeling		1	1%
Field experiment		2	3%
Random sample survey	-	3	4%
Other		4	6%
Quasi experiment		5	7%
Interview (structured or unstructured)		5	7%
Observation		6	9%
Neuroimaging and other psychophysiological methods		6	9%
Self-report inventory		14	20%
Controlled experiment		22	31%

Most used

Archival research		0	0%
Twin study		0	0%
Content analysis		0	0%
Meta-analysis		1	1%
Case study		1	1%
Computational modeling		1	1%
Field experiment		2	3%
Random sample survey		3	4%
Other		4	6%
Quasi experiment	4	5	7%
Interview (structured or unstructured)		5	7%
Observation		6	9%
Neuroimaging and other psychophysiological methods		6	9%
Self-report inventory		14	20%
Controlled experiment		22	31%

The association between types of research experience and variety

The association between types of research experience and variety

Most used

Prospective studies	2	4%
Longitudinal studies	5	11%
Retrospective studies	5	11%
Other	6	13%
Repeated measures studies	11	24%
Cross-sectional studies	16	36%

Opportunities to expand knowledge

Have you ever felt your choice of research method, design, and data analysis was dictated by concerns other than the purely theoretical?

Opportunities to expand knowledge

Have you ever felt your choice of research method, design, and data analysis was dictated by concerns other than the purely theoretical?

73% answered YES 27% answered NO

Opportunities to expand knowledge

Have you ever felt your choice of research method, design, and data analysis was dictated by concerns other than the purely theoretical?

73% answered YES 27% answered NO 15 Variety of analysis techniques 5

Understand the question that needs to be answered before deciding which method and statistical analysis to use. The question should drive those choices, not the reverse.

- PhD from the United States, 42 years research experience

The importance of getting in early

Once misconceptions about statistics are established, they are hard to change - (Garfield, 1995;Macdonald, 1997)

The importance of getting in early

Once misconceptions about statistics are established, they are hard to change - (Garfield, 1995;Macdonald, 1997)

Having a good working knowledge of various types of data collection methods and analytic tools (statistical analyses, qualitative analyses) will mean you are free to ask a wider range of research questions and then know how to pursue the answer to those questions. - PhD from the United States, 2 years research experience

Pre-existing approaches to guiding young academics through the statistical decision making process are limited by:

- Their supervisor's knowledge
- The scope of published works
- The scope of decision making aides

Pre-existing approaches to guiding young academics through the statistical decision making process are limited by:

- Their supervisor's knowledge
- The scope of published works
- The scope of decision making aides
- A lack of broader context

Pre-existing approaches to guiding young academics through the statistical decision making process are limited by:

- Their supervisor's knowledge
- The scope of published works
- The scope of decision making aides
- A lack of broader context

Experience researchers' insights can help to address this.

Pre-existing approaches to guiding young academics through the statistical decision making process are limited by:

- Their supervisor's knowledge
- The scope of published works
- The scope of decision making aides
- A lack of broader context

Experience researchers' insights can help to address this.

You can help – complete the questionnaire at http://tinyurl.com/academicdms

References

- Clark-carter,D (1997) The account taken of statistical power in research published in the British Journal of Psychology. British Journal of Psychology, 88:71-83, 1997.
- Corston, R. & Coleman, A. (2000). A Crash Course in SPSS for Windows. Oxford: Blackwell
- Corbett, D. & Wilson, B.(1995) Make a Difference With, Not For, Students: A Plea to Researchers and Reformers. Educational Researcher, 24(5):12- 17,1995.
- Hopkins, W. G. & Batterham, A. M. (2005). A Decision Tree for Controlled Trials. Health (San Francisco), 9, 33 –39. Retrieved from http://sportsci.org/jour/05/wghamb.htm
- Grosofsky, A. (2008). Statistics Decision Aids
- Garfield, J. (1995) How Students Learn Statistics. International Statistical Review, 63(1):25-34
- Haslam, S. A. & McGarty, C. (2003). Research Methods and Statistics in Psychology. London: Sage
- Hopkins, W. G. & Batterham, A. M. (2005). A Decision Tree for Controlled Trials. Health (San Francisco), 9, 33–39. Retrieved from http://sportsci.org/jour/05/wghamb.htm
- Howell, D. (2008). Fundamental Statistics for the behavioral sciences (6th). Belmont, CA: Wadsworth
- Tabachnick, B. G. & Fidell, L. S. (2007). Using Multivariate Statistics (Fifth). USA
- Macdonald, R.R. (1997) On statistical testing in psychology. British Journal of Psychology, 88(2):333-347.
- Matsumo, D. & Van de Vijver, F. J. R. (2010). Cross-Cultural Research Methods in Psychology. Cambridge University Press. Retrieved from http://books.google.com.au/books/about/Cross_Cultural_Research_Methods_in_Psych.html?id=6VpQNIc9pUAC
- Mock, T. J. (1972). A Decision Tree Approach to the Methodological Decision Process. Analysis, 47(4), 826–829. Retrieved from http://www.jstor.org/stable/245

MicroOsiris Decision Tree For Statistics (http://www.microsiris.com/Statistical%20Decision%20Tree/)

Selecting Statistics (http://www.socialresearchmethods.net/selstat/ssstart.htm)

You can help – complete the questionnaire at http://tinyurl.com/academicdms